These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18200535)

  • 1. Application of a two-state kinetic model to the heterogeneous kinetics of reaction between cysteine and hydrogen peroxide in amorphous lyophiles.
    Luo D; Anderson BD
    J Pharm Sci; 2008 Sep; 97(9):3907-26. PubMed ID: 18200535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanism for the reaction of cysteine with hydrogen peroxide in amorphous polyvinylpyrrolidone lyophiles.
    Luo D; Anderson BD
    Pharm Res; 2006 Oct; 23(10):2239-53. PubMed ID: 16951993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution.
    Luo D; Smith SW; Anderson BD
    J Pharm Sci; 2005 Feb; 94(2):304-16. PubMed ID: 15570599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism-based kinetic analysis of succinimide-mediated deamidation, racemization, and covalent adduct formation in a model peptide in amorphous lyophiles.
    Dehart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3096-109. PubMed ID: 22271437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state stability of human insulin. II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2-5 solutions: stabilization against covalent dimer formation.
    Strickley RG; Anderson BD
    J Pharm Sci; 1997 Jun; 86(6):645-53. PubMed ID: 9188045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of water and polymer content on covalent amide-linked adduct formation in peptide-containing amorphous lyophiles.
    DeHart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3142-56. PubMed ID: 22437444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione.
    Ison A; Odeh IN; Margerum DW
    Inorg Chem; 2006 Oct; 45(21):8768-75. PubMed ID: 17029389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of the [Ru(III)(edta)(H2O)](-)-mediated oxidation of cysteine by H2O2.
    Chatterjee D; Ember E; Pal U; Ghosh S; van Eldik R
    Dalton Trans; 2011 Nov; 40(41):10997-1004. PubMed ID: 21918781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an exact mathematical model and the steady-state approximation to the kinetics of the reaction of cysteine and hydrogen peroxide in aqueous solution: a reply to the Ashby and Nagy commentary.
    Anderson BD; Luo D
    J Pharm Sci; 2006 Jan; 95(1):19-24. PubMed ID: 16307452
    [No Abstract]   [Full Text] [Related]  

  • 10. Solid-state stability of human insulin. I. Mechanism and the effect of water on the kinetics of degradation in lyophiles from pH 2-5 solutions.
    Strickley RG; Anderson BD
    Pharm Res; 1996 Aug; 13(8):1142-53. PubMed ID: 8865303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between chemical reactivity and the Hammett acidity function in amorphous solids using inversion of sucrose as a model reaction.
    Chatterjee K; Shalaev EY; Suryanarayanan R; Govindarajan R
    J Pharm Sci; 2008 Jan; 97(1):274-86. PubMed ID: 17828730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanisms of deamidation and covalent amide-linked adduct formation in amorphous lyophiles of a model asparagine-containing Peptide.
    Dehart MP; Anderson BD
    Pharm Res; 2012 Oct; 29(10):2722-37. PubMed ID: 22006203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution.
    Ashby MT; Nagy P
    J Pharm Sci; 2006 Jan; 95(1):15-8. PubMed ID: 16299779
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of solid-state acidity on the decomposition of sucrose in amorphous systems. I.
    Alkhamis KA
    Int J Pharm; 2008 Oct; 362(1-2):74-80. PubMed ID: 18647642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P; Ashby MT
    J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate).
    Brausam A; Eigler S; Jux N; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics.
    Toledo JC; Audi R; Ogusucu R; Monteiro G; Netto LE; Augusto O
    Free Radic Biol Med; 2011 May; 50(9):1032-8. PubMed ID: 21354305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive sulfur species: kinetics and mechanism of the hydrolysis of cysteine thiosulfinate ester.
    Nagy P; Ashby MT
    Chem Res Toxicol; 2007 Sep; 20(9):1364-72. PubMed ID: 17764150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of O-O bond cleavage in the reaction of [RuIII(edta)(H2O)]- with hydroperoxides in aqueous solution.
    Chatterjee D; Sikdar A; Patnam VR; Theodoridis A; van Eldik R
    Dalton Trans; 2008 Aug; (29):3851-6. PubMed ID: 18629407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.