These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18200876)

  • 1. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization.
    Hussein HS; Ruiz ON; Terry N; Daniell H
    Environ Sci Technol; 2007 Dec; 41(24):8439-46. PubMed ID: 18200876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.
    He YK; Sun JG; Feng XZ; Czakó M; Márton L
    Cell Res; 2001 Sep; 11(3):231-6. PubMed ID: 11642409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury.
    Haque S; Zeyaullah M; Nabi G; Srivastava PS; Ali A
    J Microbiol Biotechnol; 2010 May; 20(5):917-24. PubMed ID: 20519916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic engineering to enhance mercury phytoremediation.
    Ruiz ON; Daniell H
    Curr Opin Biotechnol; 2009 Apr; 20(2):213-9. PubMed ID: 19328673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.
    Ruiz ON; Alvarez D; Torres C; Roman L; Daniell H
    Plant Biotechnol J; 2011 Jun; 9(5):609-17. PubMed ID: 21518240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of organomercurial compounds via chloroplast genetic engineering.
    Ruiz ON; Hussein HS; Terry N; Daniell H
    Plant Physiol; 2003 Jul; 132(3):1344-52. PubMed ID: 12857816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Uptake and Volatilization of Gaseous Elemental Mercury by Paddy Rice].
    Shang S; Tian P; Jiang Y; Wu JX; Jiang S; Deng H
    Huan Jing Ke Xue; 2017 Dec; 38(12):5308-5314. PubMed ID: 29964595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in arabidopsis.
    Yu P; Yuan J; Deng X; Ma M; Zhang H
    Plant Cell Physiol; 2014 Sep; 55(9):1568-81. PubMed ID: 24951313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic expression of a bacterial mercury transporter MerC in root epidermis for efficient mercury accumulation in shoots of Arabidopsis plants.
    Uraguchi S; Sone Y; Kamezawa M; Tanabe M; Hirakawa M; Nakamura R; Takanezawa Y; Kiyono M
    Sci Rep; 2019 Mar; 9(1):4347. PubMed ID: 30867467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCARECROW promoter-driven expression of a bacterial mercury transporter MerC in root endodermal cells enhances mercury accumulation in Arabidopsis shoots.
    Uraguchi S; Sone Y; Yoshikawa A; Tanabe M; Sato H; Otsuka Y; Nakamura R; Takanezawa Y; Kiyono M
    Planta; 2019 Aug; 250(2):667-674. PubMed ID: 31104129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of transgenic plants in the bioremediation of soils contaminated with trace elements.
    Krämer U; Chardonnens AN
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):661-72. PubMed ID: 11525612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of mercury-contaminated soils by Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Olivero-Verbel J; Díez S
    Chemosphere; 2015 May; 127():58-63. PubMed ID: 25655698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.
    Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N
    Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury uptake and effects on growth in Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Enamorado-Montes G; Díez S
    J Environ Sci (China); 2016 Oct; 48():120-125. PubMed ID: 27745657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil.
    Li R; Wu H; Ding J; Li N; Fu W; Gan L; Li Y
    Plant Cell Rep; 2020 Oct; 39(10):1369-1380. PubMed ID: 32712731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.