These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18200882)

  • 1. Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting.
    Dewulf J; Bösch ME; De Meester B; Van der Vorst G; Van Langenhove H; Hellweg S; Huijbregts MA
    Environ Sci Technol; 2007 Dec; 41(24):8477-83. PubMed ID: 18200882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of spatially differentiated resource footprints for products and services through a macro-economic and thermodynamic approach.
    Huysman S; Schaubroeck T; Dewulf J
    Environ Sci Technol; 2014 Aug; 48(16):9709-16. PubMed ID: 25025341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar energy demand (SED) of commodity life cycles.
    Rugani B; Huijbregts MA; Mutel C; Bastianoni S; Hellweg S
    Environ Sci Technol; 2011 Jun; 45(12):5426-33. PubMed ID: 21545085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.
    Laner D; Rechberger H; De Soete W; De Meester S; Astrup TF
    Waste Manag; 2015 Dec; 46():653-67. PubMed ID: 26384560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.
    Alanya S; Dewulf J; Duran M
    Environ Sci Technol; 2015 Aug; 49(16):9996-10006. PubMed ID: 26218291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved calculation of the exergy of natural resources for exergetic life cycle assessment (ELCA).
    De Meester B; Dewulf J; Janssens A; Van Langenhove H
    Environ Sci Technol; 2006 Nov; 40(21):6844-51. PubMed ID: 17144320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective.
    Taelman SE; De Meester S; Roef L; Michiels M; Dewulf J
    Bioresour Technol; 2013 Dec; 150():513-22. PubMed ID: 24012094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems.
    Taelman SE; Schaubroeck T; De Meester S; Boone L; Dewulf J
    Sci Total Environ; 2016 Apr; 550():143-156. PubMed ID: 26808405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological accounting based on extended exergy: a sustainability perspective.
    Dai J; Chen B; Sciubba E
    Environ Sci Technol; 2014 Aug; 48(16):9826-33. PubMed ID: 25062284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding exergy analysis to account for ecosystem products and services.
    Hau JL; Bakshi BR
    Environ Sci Technol; 2004 Jul; 38(13):3768-77. PubMed ID: 15296331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appreciating the role of thermodynamics in LCA improvement analysis via an application to titanium dioxide nanoparticles.
    Grubb GF; Bakshi BR
    Environ Sci Technol; 2011 Apr; 45(7):3054-61. PubMed ID: 21361276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exergy and extended exergy accounting of very large complex systems with an application to the province of Siena, Italy.
    Sciubba E; Bastianoni S; Tiezzi E
    J Environ Manage; 2008 Jan; 86(2):372-82. PubMed ID: 17064841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.
    Boone L; Van Linden V; De Meester S; Vandecasteele B; Muylle H; Roldán-Ruiz I; Nemecek T; Dewulf J
    Sci Total Environ; 2016 May; 553():551-564. PubMed ID: 26938318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels.
    Baral A; Bakshi BR
    Environ Sci Technol; 2010 Jan; 44(2):800-7. PubMed ID: 20020741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental decision-making using life cycle impact assessment and stochastic multiattribute decision analysis: a case study on alternative transportation fuels.
    Rogers K; Seager TP
    Environ Sci Technol; 2009 Mar; 43(6):1718-23. PubMed ID: 19368162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact assessment of abiotic resources in LCA: quantitative comparison of selected characterization models.
    Rørbech JT; Vadenbo C; Hellweg S; Astrup TF
    Environ Sci Technol; 2014 Oct; 48(19):11072-81. PubMed ID: 25208267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for ecosystem services in life cycle assessment, Part I: a critical review.
    Zhang Y; Singh S; Bakshi BR
    Environ Sci Technol; 2010 Apr; 44(7):2232-42. PubMed ID: 20178382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic evaluation of the resource consumption of active pharmaceutical ingredient production at three different levels.
    Van der Vorst G; Dewulf J; Aelterman W; De Witte B; Van Langenhove H
    Environ Sci Technol; 2011 Apr; 45(7):3040-6. PubMed ID: 21391625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accounting for ecosystem services in Life Cycle Assessment, Part II: toward an ecologically based LCA.
    Zhang Y; Baral A; Bakshi BR
    Environ Sci Technol; 2010 Apr; 44(7):2624-31. PubMed ID: 20180562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergy accounting for regional studies: case study of Canada and its provinces.
    Hossaini N; Hewage K
    J Environ Manage; 2013 Mar; 118():177-85. PubMed ID: 23435155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.