These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 18200934)
61. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter. Heo J; McCoy ST; Adams PJ Environ Sci Technol; 2015 Apr; 49(8):5142-50. PubMed ID: 25811231 [TBL] [Abstract][Full Text] [Related]
62. Changes in ammonia and its effects on PM Meng Z; Wu L; Xu X; Xu W; Zhang R; Jia X; Liang L; Miao Y; Cheng H; Xie Y; He J; Zhong J Sci Total Environ; 2020 Dec; 749():142208. PubMed ID: 33370901 [TBL] [Abstract][Full Text] [Related]
63. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. Zhao Y; McElroy MB; Xing J; Duan L; Nielsen CP; Lei Y; Hao J Sci Total Environ; 2011 Nov; 409(24):5177-87. PubMed ID: 21944199 [TBL] [Abstract][Full Text] [Related]
64. Impact of vehicular exhaust on ambient air quality of Rohtak city, India. Shukla V; Dalal P; Chaudhry D J Environ Biol; 2010 Nov; 31(6):929-32. PubMed ID: 21506477 [TBL] [Abstract][Full Text] [Related]
65. Impacts of pollution controls on air quality in Beijing during the 2008 Olympic Games. Shen J; Tang A; Liu X; Kopsch J; Fangmeier A; Goulding K; Zhang F J Environ Qual; 2011; 40(1):37-45. PubMed ID: 21488491 [TBL] [Abstract][Full Text] [Related]
66. Evaluation of the SO2 and NOx offset ratio method to account for secondary PM2.5 formation. Guerra SA; Olsen SR; Anderson JJ J Air Waste Manag Assoc; 2014 Mar; 64(3):265-71. PubMed ID: 24701685 [TBL] [Abstract][Full Text] [Related]
67. [Chemical composition and mass closure of particulate matter in Beijing, Tianjin and Hebei megacities, Northern China]. Sun Y; Pan YP; Li XR; Zhu RH; Wang YS Huan Jing Ke Xue; 2011 Sep; 32(9):2732-40. PubMed ID: 22165246 [TBL] [Abstract][Full Text] [Related]
68. Responses of sulfate and nitrate to anthropogenic emission changes in eastern China - in perspective of long-term variations. Qi L; Zheng H; Ding D; Wang S Sci Total Environ; 2023 Jan; 855():158875. PubMed ID: 36126708 [TBL] [Abstract][Full Text] [Related]
69. Temporal-spatial characteristics and source apportionment of PM Gao J; Wang K; Wang Y; Liu S; Zhu C; Hao J; Liu H; Hua S; Tian H Environ Pollut; 2018 Feb; 233():714-724. PubMed ID: 29126093 [TBL] [Abstract][Full Text] [Related]
70. National air pollution distribution in China and related geographic, gaseous pollutant, and socio-economic factors. Liang D; Wang YQ; Wang YJ; Ma C Environ Pollut; 2019 Jul; 250():998-1009. PubMed ID: 31085487 [TBL] [Abstract][Full Text] [Related]
71. Particulate matter, sulfur dioxide, and daily mortality in Chongqing, China. Venners SA; Wang B; Xu Z; Schlatter Y; Wang L; Xu X Environ Health Perspect; 2003 Apr; 111(4):562-7. PubMed ID: 12676616 [TBL] [Abstract][Full Text] [Related]
72. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas. Hou X; Strickland MJ; Liao KJ Environ Res; 2015 Feb; 137():475-84. PubMed ID: 25701729 [TBL] [Abstract][Full Text] [Related]
73. Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Levy JI; Wilson AM; Evans JS; Spengler JD Environ Sci Technol; 2003 Dec; 37(24):5528-36. PubMed ID: 14717160 [TBL] [Abstract][Full Text] [Related]
74. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. Qiu X; Duan L; Cai S; Yu Q; Wang S; Chai F; Gao J; Li Y; Xu Z J Environ Sci (China); 2017 Jul; 57():383-390. PubMed ID: 28647259 [TBL] [Abstract][Full Text] [Related]
75. [Situation and Characteristics of Air Pollutants Emission from Crematories in Beijing, China]. Xue YF; Yan J; Tian HZ; Xiong CC; Li JD; Wu XI; Wang W Huan Jing Ke Xue; 2015 Jun; 36(6):1959-65. PubMed ID: 26387295 [TBL] [Abstract][Full Text] [Related]
76. Characterization of PM Kim Y; Seo J; Kim JY; Lee JY; Kim H; Kim BM Environ Sci Pollut Res Int; 2018 Feb; 25(5):4330-4343. PubMed ID: 29181753 [TBL] [Abstract][Full Text] [Related]
77. Enhancement of aqueous sulfate formation by the coexistence of NO Chen T; Chu B; Ge Y; Zhang S; Ma Q; He H; Li SM Environ Pollut; 2019 Sep; 252(Pt A):236-244. PubMed ID: 31153028 [TBL] [Abstract][Full Text] [Related]
78. Linked Response of Aerosol Acidity and Ammonia to SO Lawal AS; Guan X; Liu C; Henneman LRF; Vasilakos P; Bhogineni V; Weber RJ; Nenes A; Russell AG Environ Sci Technol; 2018 Sep; 52(17):9861-9873. PubMed ID: 30032604 [TBL] [Abstract][Full Text] [Related]
79. [Observation on atmospheric pollution in Xianghe during Beijing 2008 Olympic Games]. Pan YP; Wang YS; Hu B; Liu Q; Wang YH; Nan WD Huan Jing Ke Xue; 2010 Jan; 31(1):1-9. PubMed ID: 20329508 [TBL] [Abstract][Full Text] [Related]
80. Effects of changes in sulfate, ammonia, and nitric acid on particulate nitrate concentrations in the southeastern United States. Blanchard CL; Hidy GM J Air Waste Manag Assoc; 2003 Mar; 53(3):283-90. PubMed ID: 12661688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]