These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 18201545)
21. Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: studies on the nature and mechanism of tight pterin binding. Heine CL; Kolesnik B; Schmidt R; Werner ER; Mayer B; Gorren AC Biochemistry; 2014 Mar; 53(8):1284-95. PubMed ID: 24512289 [TBL] [Abstract][Full Text] [Related]
22. Interplay between reactive oxygen and nitrogen species in living organisms. Lushchak VI; Lushchak O Chem Biol Interact; 2021 Nov; 349():109680. PubMed ID: 34606757 [TBL] [Abstract][Full Text] [Related]
23. Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice. Santhanam AV; d'Uscio LV; He T; Das P; Younkin SG; Katusic ZS J Neurochem; 2015 Sep; 134(6):1129-38. PubMed ID: 26111938 [TBL] [Abstract][Full Text] [Related]
24. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Milstien S; Katusic Z Biochem Biophys Res Commun; 1999 Oct; 263(3):681-4. PubMed ID: 10512739 [TBL] [Abstract][Full Text] [Related]
25. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Panday S; Talreja R; Kavdia M Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268 [TBL] [Abstract][Full Text] [Related]
26. Computational modeling of neuronal nitric oxide synthase biochemical pathway: A mechanistic analysis of tetrahydrobiopterin and oxidative stress. Allboani A; Kar S; Kavdia M Free Radic Biol Med; 2024 Sep; 222():625-637. PubMed ID: 39004235 [TBL] [Abstract][Full Text] [Related]
28. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104 [TBL] [Abstract][Full Text] [Related]
30. Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Masano T; Kawashima S; Toh R; Satomi-Kobayashi S; Shinohara M; Takaya T; Sasaki N; Takeda M; Tawa H; Yamashita T; Yokoyama M; Hirata K Circ J; 2008 Sep; 72(9):1512-9. PubMed ID: 18724032 [TBL] [Abstract][Full Text] [Related]
31. [Reactive nitrogen and oxygen species metabolism in rat heart mitochondria upon administration of NO donor in vivo]. Akopova OV; Korkach IuP; Kotsiuruba AV; Kolchyns'ka LI; Sagach VF Fiziol Zh (1994); 2012; 58(2):3-15. PubMed ID: 22873047 [TBL] [Abstract][Full Text] [Related]
32. Threshold levels of extracellular l-arginine that trigger NOS-mediated ROS/RNS production in cardiac ventricular myocytes. Ramachandran J; Peluffo RD Am J Physiol Cell Physiol; 2017 Feb; 312(2):C144-C154. PubMed ID: 27903582 [TBL] [Abstract][Full Text] [Related]
33. Activation of neuronal nitric-oxide synthase by the 5-methyl analog of tetrahydrobiopterin. Functional evidence against reductive oxygen activation by the pterin cofactor. Riethmüller C; Gorren AC; Pitters E; Hemmens B; Habisch HJ; Heales SJ; Schmidt K; Werner ER; Mayer B J Biol Chem; 1999 Jun; 274(23):16047-51. PubMed ID: 10347155 [TBL] [Abstract][Full Text] [Related]
34. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Satoh M; Fujimoto S; Haruna Y; Arakawa S; Horike H; Komai N; Sasaki T; Tsujioka K; Makino H; Kashihara N Am J Physiol Renal Physiol; 2005 Jun; 288(6):F1144-52. PubMed ID: 15687247 [TBL] [Abstract][Full Text] [Related]
35. Protective role of nitric oxide synthase against ischemia-reperfusion injury in guinea pig myocardial mitochondria. Hotta Y; Otsuka-Murakami H; Fujita M; Nakagawa J; Yajima M; Liu W; Ishikawa N; Kawai N; Masumizu T; Kohno M Eur J Pharmacol; 1999 Sep; 380(1):37-48. PubMed ID: 10513558 [TBL] [Abstract][Full Text] [Related]
36. Oxidative stress induces phosphorylation of neuronal NOS in cardiomyocytes through AMP-activated protein kinase (AMPK). Kar R; Kellogg DL; Roman LJ Biochem Biophys Res Commun; 2015 Apr; 459(3):393-7. PubMed ID: 25732085 [TBL] [Abstract][Full Text] [Related]
37. Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction of tetrahydrobiopterin. Topal G; Brunet A; Millanvoye E; Boucher JL; Rendu F; Devynck MA; David-Dufilho M Free Radic Biol Med; 2004 Jun; 36(12):1532-41. PubMed ID: 15182855 [TBL] [Abstract][Full Text] [Related]
38. The C331A mutant of neuronal nitric-oxide synthase is defective in arginine binding. Martásek P; Miller RT; Liu Q; Roman LJ; Salerno JC; Migita CT; Raman CS; Gross SS; Ikeda-Saito M; Masters BS J Biol Chem; 1998 Dec; 273(52):34799-805. PubMed ID: 9857005 [TBL] [Abstract][Full Text] [Related]
39. Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by L-arginine and tetrahydrobiopterin. Berka V; Wu G; Yeh HC; Palmer G; Tsai AL J Biol Chem; 2004 Jul; 279(31):32243-51. PubMed ID: 15166218 [TBL] [Abstract][Full Text] [Related]
40. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Khojah HM; Ahmed S; Abdel-Rahman MS; Hamza AB Free Radic Biol Med; 2016 Aug; 97():285-291. PubMed ID: 27344969 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]