These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18201821)

  • 1. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition.
    Bo Z; Yan J; Li X; Chi Y; Cen K
    J Hazard Mater; 2008 Jul; 155(3):494-501. PubMed ID: 18201821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen dioxide formation in the gliding arc discharge-assisted decomposition of volatile organic compounds.
    Bo Z; Yan J; Li X; Chi Y; Cen K
    J Hazard Mater; 2009 Jul; 166(2-3):1210-6. PubMed ID: 19153003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of volatile organic compounds using gliding arc discharge plasma.
    Gong X; Lin Y; Li X; Wu A; Zhang H; Yan J; Du C
    J Air Waste Manag Assoc; 2020 Feb; 70(2):138-157. PubMed ID: 31815602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposition characteristics of toluene by a corona radical shower system.
    Wu ZL; Gao X; Luo ZY; Ni MJ; Cen KF
    J Environ Sci (China); 2004; 16(4):543-7. PubMed ID: 15495952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of naphthalene by dc gliding arc gas discharge.
    Yu L; Li X; Tu X; Wang Y; Lu S; Yan J
    J Phys Chem A; 2010 Jan; 114(1):360-8. PubMed ID: 20000608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation.
    Studer M; Rudolf von Rohr P
    Biotechnol Bioeng; 2008 Jan; 99(1):38-48. PubMed ID: 17570707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing reverse-flow packed bed reactors for stable treatment of volatile organic compounds.
    Chan FL; Keith JM
    J Environ Manage; 2006 Feb; 78(3):223-31. PubMed ID: 16112340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition.
    Bo Z; Wu E; Yan J; Chi Y; Cen K
    Rev Sci Instrum; 2013 Jan; 84(1):016105. PubMed ID: 23387711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a gliding arc plasma reactor for CO₂destruction.
    Kim SC; Chun YN
    Environ Technol; 2014; 35(21-24):2940-6. PubMed ID: 25189841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-scrubbing volatile organic carbons in the air stream with a gas diffusion electrode.
    Yang J; Liu K; Jia J; Cao L
    J Hazard Mater; 2011 Apr; 188(1-3):125-31. PubMed ID: 21324588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor.
    Yu L; Tu X; Li X; Wang Y; Chi Y; Yan J
    J Hazard Mater; 2010 Aug; 180(1-3):449-55. PubMed ID: 20462691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-phase partitioning bioreactors for treatment of volatile organic compounds.
    Muñoz R; Villaverde S; Guieysse B; Revah S
    Biotechnol Adv; 2007; 25(4):410-22. PubMed ID: 17498907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Emission spectroscopy diagnosis of the radicals generated in gas-liquid phases gliding arc discharge].
    Yan JH; Dai SL; Li XD; Tu X; Liu YN; Cen KF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1851-5. PubMed ID: 18975818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A; Rodriguez JM
    J Hazard Mater; 2007 Sep; 148(1-2):419-27. PubMed ID: 17408853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ceria-zirconia mixed oxides as catalysts for the combustion of volatile organic compounds using inverse gas chromatography.
    Díaz E; de Rivas B; López-Fonseca R; Ordóñez S; Gutiérrez-Ortiz JI
    J Chromatogr A; 2006 May; 1116(1-2):230-9. PubMed ID: 16581082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colorimetric sensor arrays for volatile organic compounds.
    Janzen MC; Ponder JB; Bailey DP; Ingison CK; Suslick KS
    Anal Chem; 2006 Jun; 78(11):3591-600. PubMed ID: 16737212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.
    Abdullah AZ; Bakar MZ; Bhatia S
    J Hazard Mater; 2006 Feb; 129(1-3):39-49. PubMed ID: 16310938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses.
    Abraham MH; Ibrahim A; Acree WE
    Chem Res Toxicol; 2006 Jun; 19(6):801-8. PubMed ID: 16780359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs.
    Abraham MH; Ibrahim A; Acree WE
    Eur J Med Chem; 2008 Mar; 43(3):478-85. PubMed ID: 17544548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass transfer of VOCs in laboratory-scale air sparging tank.
    Chao KP; Ong SK; Huang MC
    J Hazard Mater; 2008 Apr; 152(3):1098-107. PubMed ID: 17804158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.