BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 18202664)

  • 1. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin.
    Roll-Mecak A; Vale RD
    Nature; 2008 Jan; 451(7176):363-7. PubMed ID: 18202664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An allosteric network in spastin couples multiple activities required for microtubule severing.
    Sandate CR; Szyk A; Zehr EA; Lander GC; Roll-Mecak A
    Nat Struct Mol Biol; 2019 Aug; 26(8):671-678. PubMed ID: 31285604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing.
    White SR; Evans KJ; Lary J; Cole JL; Lauring B
    J Cell Biol; 2007 Mar; 176(7):995-1005. PubMed ID: 17389232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved aromatic and basic amino acid residues in the pore region of Caenorhabditis elegans spastin play critical roles in microtubule severing.
    Matsushita-Ishiodori Y; Yamanaka K; Hashimoto H; Esaki M; Ogura T
    Genes Cells; 2009 Aug; 14(8):925-40. PubMed ID: 19619244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules.
    Roll-Mecak A; Vale RD
    Curr Biol; 2005 Apr; 15(7):650-5. PubMed ID: 15823537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The AAA ATPase spastin links microtubule severing to membrane modelling.
    Lumb JH; Connell JW; Allison R; Reid E
    Biochim Biophys Acta; 2012 Jan; 1823(1):192-7. PubMed ID: 21888932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the human spastin AAA domain.
    Taylor JL; White SR; Lauring B; Kull FJ
    J Struct Biol; 2012 Aug; 179(2):133-7. PubMed ID: 22446388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing.
    Evans KJ; Gomes ER; Reisenweber SM; Gundersen GG; Lauring BP
    J Cell Biol; 2005 Feb; 168(4):599-606. PubMed ID: 15716377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hereditary spastic paraplegia SPG4: what is known and not known about the disease.
    Solowska JM; Baas PW
    Brain; 2015 Sep; 138(Pt 9):2471-84. PubMed ID: 26094131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics.
    Errico A; Ballabio A; Rugarli EI
    Hum Mol Genet; 2002 Jan; 11(2):153-63. PubMed ID: 11809724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graded Control of Microtubule Severing by Tubulin Glutamylation.
    Valenstein ML; Roll-Mecak A
    Cell; 2016 Feb; 164(5):911-21. PubMed ID: 26875866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP).
    Baxter SL; Allard DE; Crowl C; Sherwood NT
    Dis Model Mech; 2014 Aug; 7(8):1005-12. PubMed ID: 24906373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics.
    Solowska JM; D'Rozario M; Jean DC; Davidson MW; Marenda DR; Baas PW
    J Neurosci; 2014 Jan; 34(5):1856-67. PubMed ID: 24478365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore.
    Johjima A; Noi K; Nishikori S; Ogi H; Esaki M; Ogura T
    J Biol Chem; 2015 May; 290(18):11762-70. PubMed ID: 25805498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and chemical modulation of spastin-dependent axon outgrowth in zebrafish embryos indicates a role for impaired microtubule dynamics in hereditary spastic paraplegia.
    Butler R; Wood JD; Landers JA; Cunliffe VT
    Dis Model Mech; 2010; 3(11-12):743-51. PubMed ID: 20829563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A patient-derived stem cell model of hereditary spastic paraplegia with SPAST mutations.
    Abrahamsen G; Fan Y; Matigian N; Wali G; Bellette B; Sutharsan R; Raju J; Wood SA; Veivers D; Sue CM; Mackay-Sim A
    Dis Model Mech; 2013 Mar; 6(2):489-502. PubMed ID: 23264559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function.
    Trotta N; Orso G; Rossetto MG; Daga A; Broadie K
    Curr Biol; 2004 Jul; 14(13):1135-47. PubMed ID: 15242610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C. elegans homologue of the spastic paraplegia protein, spastin, disassembles microtubules.
    Matsushita-Ishiodori Y; Yamanaka K; Ogura T
    Biochem Biophys Res Commun; 2007 Jul; 359(1):157-62. PubMed ID: 17531954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spastin's microtubule-binding properties and comparison to katanin.
    Eckert T; Le DT; Link S; Friedmann L; Woehlke G
    PLoS One; 2012; 7(12):e50161. PubMed ID: 23272056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.