These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1820282)

  • 1. The expert system for toxicity prediction of chemicals based on structure-activity relationship.
    Nakadate M; Hayashi M; Sofuni T; Kamata E; Aida Y; Osada T; Ishibe T; Sakamura Y; Ishidate M
    Environ Health Perspect; 1991 Dec; 96():77-9. PubMed ID: 1820282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity prediction of chemicals based on structure-activity relationships.
    Nakadate M
    Toxicol Lett; 1998 Dec; 102-103():627-9. PubMed ID: 10022325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fact database for toxicological data at the National Institute of Hygienic Sciences, Japan.
    Hayashi M; Nakadate M; Osada T; Ishibe T; Tanaka S; Maekawa A; Sofuni T; Nakata Y; Kanoh N; Hashiba S
    Environ Health Perspect; 1991 Dec; 96():57-60. PubMed ID: 1820279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relations: maximizing the usefulness of mutagenicity and carcinogenicity databases.
    Klopman G; Rosenkranz H
    Environ Health Perspect; 1991 Dec; 96():67-75. PubMed ID: 1820281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico assessment of chemical mutagenesis in comparison with results of Salmonella microsome assay on 909 chemicals.
    Hayashi M; Kamata E; Hirose A; Takahashi M; Morita T; Ema M
    Mutat Res; 2005 Dec; 588(2):129-35. PubMed ID: 16257575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Salmonella mutagenicity.
    Zeiger E; Ashby J; Bakale G; Enslein K; Klopman G; Rosenkranz HS
    Mutagenesis; 1996 Sep; 11(5):471-84. PubMed ID: 8921509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic toxicity database of the National Toxicology Program: evaluation of the relationships between genetic toxicity and carcinogenicity.
    Tennant RW
    Environ Health Perspect; 1991 Dec; 96():47-51. PubMed ID: 1820276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of mutagenicity of aromatic and heteroaromatic amines from structure: a hierarchical QSAR approach.
    Basak SC; Mills DR; Balaban AT; Gute BD
    J Chem Inf Comput Sci; 2001; 41(3):671-8. PubMed ID: 11410045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proportions of mutagens among chemicals in commerce.
    Zeiger E; Margolin BH
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):219-25. PubMed ID: 11067778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenicity of 42 chemicals in Salmonella.
    Zeiger E
    Environ Mol Mutagen; 1990; 16 Suppl 18():32-54. PubMed ID: 2091923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. International Commission for Protection Against Environmental Mutagens and Carcinogens. Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program.
    Enslein K; Gombar VK; Blake BW
    Mutat Res; 1994 Feb; 305(1):47-61. PubMed ID: 7508547
    [No Abstract]   [Full Text] [Related]  

  • 12. Knowledge-based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR.
    Greene N; Judson PN; Langowski JJ; Marchant CA
    SAR QSAR Environ Res; 1999; 10(2-3):299-314. PubMed ID: 10491855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-silico screening of high production volume chemicals for mutagenicity using the MCASE QSAR expert system.
    Klopman G; Chakravarti SK; Harris N; Ivanov J; Saiakhov RD
    SAR QSAR Environ Res; 2003 Apr; 14(2):165-80. PubMed ID: 12747573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds.
    Gadaleta D; Manganelli S; Manganaro A; Porta N; Benfenati E
    Toxicology; 2016 Aug; 370():20-30. PubMed ID: 27644887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of 11 in silico models for the prediction of small molecule mutagenicity: role of steric hindrance and electron-withdrawing groups.
    Ford KA; Ryslik G; Chan BK; Lewin-Koh SC; Almeida D; Stokes M; Gomez SR
    Toxicol Mech Methods; 2017 Jan; 27(1):24-35. PubMed ID: 27813437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural implications of the ICPEMC method for quantifying genotoxicity data.
    Rosenkranz HS; Klopman G
    Mutat Res; 1994 Feb; 305(1):99-116. PubMed ID: 7508550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmark data set for in silico prediction of Ames mutagenicity.
    Hansen K; Mika S; Schroeter T; Sutter A; ter Laak A; Steger-Hartmann T; Heinrich N; Müller KR
    J Chem Inf Model; 2009 Sep; 49(9):2077-81. PubMed ID: 19702240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure activity-based predictive toxicology: an efficient and economical method for generating non-congeneric data bases.
    Rosenkranz HS; Takihi N; Klopman G
    Mutagenesis; 1991 Sep; 6(5):391-4. PubMed ID: 1795644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAR modeling of genotoxic phenomena: the effect of supplementation with physiological chemicals.
    Rosenkranz HS; Cunningham AR
    Mutat Res; 2001 May; 476(1-2):133-7. PubMed ID: 11336990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts.
    Chakravarti SK; Saiakhov RD; Klopman G
    J Chem Inf Model; 2012 Oct; 52(10):2609-18. PubMed ID: 22947043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.