These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18203240)

  • 1. Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules.
    Li ZR; Liu GR; Chen YZ; Wang JS; Bow H; Cheng Y; Han J
    Electrophoresis; 2008 Jan; 29(2):329-39. PubMed ID: 18203240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores.
    Li ZR; Liu GR; Han J; Cheng Y; Chen YZ; Wang JS; Hadjiconstantinou NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041911. PubMed ID: 19905346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays.
    Fu J; Yoo J; Han J
    Phys Rev Lett; 2006 Jul; 97(1):018103. PubMed ID: 16907412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement effects on electromigration of long DNA molecules in an ordered cavity array.
    Zeng Y; Harrison DJ
    Electrophoresis; 2006 Oct; 27(19):3747-52. PubMed ID: 16960918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput DNA separation in nanofilter arrays.
    Choi S; Kim JM; Ahn KH; Lee SJ
    Electrophoresis; 2014 Aug; 35(15):2068-77. PubMed ID: 24930709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays.
    Li ZR; Liu GR; Hadjiconstantinou NG; Han J; Wang JS; Chen YZ
    Electrophoresis; 2011 Feb; 32(5):506-17. PubMed ID: 21341285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of biomolecules in asymmetric nanofilter arrays.
    Li ZR; Liu GR; Han J; Chen YZ; Wang JS; Hadjiconstantinou NG
    Anal Bioanal Chem; 2009 May; 394(2):427-35. PubMed ID: 19127359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation.
    Streek M; Schmid F; Duong TT; Ros A
    J Biotechnol; 2004 Aug; 112(1-2):79-89. PubMed ID: 15288943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A penalty method to model particle interactions in DNA-laden flows.
    Trebotich D; Miller GH; Bybee MD
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive interpretation of gel electrophoresis data.
    Yuan C; Rhoades E; Heuer DM; Saha S; Lou XW; Archer LA
    Anal Chem; 2006 Sep; 78(17):6179-86. PubMed ID: 16944900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal interpolating function for the dispersion coefficient of DNA fragments in sieving matrices.
    Mercier JF; Slater GW
    Electrophoresis; 2006 Apr; 27(8):1453-61. PubMed ID: 16609930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic separation of DNA in gels and nanostructures.
    Salieb-Beugelaar GB; Dorfman KD; van den Berg A; Eijkel JC
    Lab Chip; 2009 Sep; 9(17):2508-23. PubMed ID: 19680576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements.
    Das S; Chakraborty S
    Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetics induced asymmetric transport in polymeric nanonozzles.
    Wang S; Hu X; Lee LJ
    Lab Chip; 2008 Apr; 8(4):573-81. PubMed ID: 18369512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation.
    Fu J; Mao P; Han J
    Appl Phys Lett; 2005 Dec; 87(26):263902. PubMed ID: 18846250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic simulations of combined DNA electrophoretic flow and EOF in nano-fluidic devices.
    Duong-Hong D; Han J; Wang JS; Hadjiconstantinou NG; Chen YZ; Liu GR
    Electrophoresis; 2008 Dec; 29(24):4880-6. PubMed ID: 19130595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of molecular nano-array in potential-energy profile for a single dsDNA.
    Alishahi M; Kamali R; Abouali O
    Eur Phys J E Soft Matter; 2016 Apr; 39(4):50. PubMed ID: 27125679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels.
    Heuer DM; Saha S; Archer LA
    Biopolymers; 2003 Dec; 70(4):471-81. PubMed ID: 14648758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the gel electrophoresis of short duplex DNA by Brownian dynamics: cubic gel lattice with direct interaction.
    Allison SA; Li Z; Reed D; Stellwagen NC
    Electrophoresis; 2002 Aug; 23(16):2678-89. PubMed ID: 12210172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.