BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18203957)

  • 1. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery.
    Rashid ST; Fuller B; Hamilton G; Seifalian AM
    FASEB J; 2008 Jun; 22(6):2084-9. PubMed ID: 18203957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular engineering of conduits for coronary and lower limb bypass surgery: role of cell attachment peptides and pre-conditioning in optimising smooth muscle cells (SMC) adherence to compliant poly(carbonate-urea)urethane (MyoLink) scaffolds.
    Rashid ST; Salacinski HJ; Button MJ; Fuller B; Hamilton G; Seifalian AM
    Eur J Vasc Endovasc Surg; 2004 Jun; 27(6):608-16. PubMed ID: 15121111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes.
    Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fate of an endothelium layer after preconditioning.
    Yazdani SK; Tillman BW; Berry JL; Soker S; Geary RL
    J Vasc Surg; 2010 Jan; 51(1):174-83. PubMed ID: 20117500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo study of a model tissue-engineered small-diameter vascular bypass graft.
    Baguneid M; de Mel A; Yildirimer L; Fuller BJ; Hamilton G; Seifalian AM
    Biotechnol Appl Biochem; 2011; 58(1):14-24. PubMed ID: 21446955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
    Neff LP; Tillman BW; Yazdani SK; Machingal MA; Yoo JJ; Soker S; Bernish BW; Geary RL; Christ GJ
    J Vasc Surg; 2011 Feb; 53(2):426-34. PubMed ID: 20934837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dual cell seeding to improve cell retention on polytetrafluoroethylene grafts].
    Chen L; Yu H; Dai N; Tao SF; Gong WH
    Zhonghua Wai Ke Za Zhi; 2003 Feb; 41(2):143-5. PubMed ID: 12783680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the ideal bypass graft.
    Daou MR; Bendok BR; Awad IA
    Neurosurgery; 2008 Oct; 63(4):N9. PubMed ID: 18981873
    [No Abstract]   [Full Text] [Related]  

  • 10. Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress.
    Salacinski HJ; Tai NR; Punshon G; Giudiceandrea A; Hamilton G; Seifalian AM
    Eur J Vasc Endovasc Surg; 2000 Oct; 20(4):342-52. PubMed ID: 11035966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels.
    Gao J; Crapo P; Nerem R; Wang Y
    J Biomed Mater Res A; 2008 Jun; 85(4):1120-8. PubMed ID: 18412137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel-electrospun mesh composites for coronary artery bypass grafts.
    McMahon RE; Qu X; Jimenez-Vergara AC; Bashur CA; Guelcher SA; Goldstein AS; Hahn MS
    Tissue Eng Part C Methods; 2011 Apr; 17(4):451-61. PubMed ID: 21083438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress.
    Feugier P; Black RA; Hunt JA; How TV
    Biomaterials; 2005 May; 26(13):1457-66. PubMed ID: 15522747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Primary experimental study on the construction of tissue engineering blood vessel].
    Chen B; Zhang BG; Zhang J; Gu YQ; Li JX; Yu HX; Wang ZG
    Zhonghua Wai Ke Za Zhi; 2005 Oct; 43(19):1271-4. PubMed ID: 16271228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.
    Grenier S; Sandig M; Mequanint K
    J Biomed Mater Res A; 2007 Sep; 82(4):802-9. PubMed ID: 17326143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells.
    Wang C; Cen L; Yin S; Liu Q; Liu W; Cao Y; Cui L
    Biomaterials; 2010 Feb; 31(4):621-30. PubMed ID: 19819545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.