These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 18203989)
1. Performance trade-offs in the flight initiation of Drosophila. Card G; Dickinson M J Exp Biol; 2008 Feb; 211(Pt 3):341-53. PubMed ID: 18203989 [TBL] [Abstract][Full Text] [Related]
2. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking. Fontaine EI; Zabala F; Dickinson MH; Burdick JW J Exp Biol; 2009 May; 212(Pt 9):1307-23. PubMed ID: 19376952 [TBL] [Abstract][Full Text] [Related]
3. The aerodynamics of hovering flight in Drosophila. Fry SN; Sayaman R; Dickinson MH J Exp Biol; 2005 Jun; 208(Pt 12):2303-18. PubMed ID: 15939772 [TBL] [Abstract][Full Text] [Related]
4. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. Frazier MR; Harrison JF; Kirkton SD; Roberts SP J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301 [TBL] [Abstract][Full Text] [Related]
5. The aerodynamics of free-flight maneuvers in Drosophila. Fry SN; Sayaman R; Dickinson MH Science; 2003 Apr; 300(5618):495-8. PubMed ID: 12702878 [TBL] [Abstract][Full Text] [Related]
6. Rotational accelerations stabilize leading edge vortices on revolving fly wings. Lentink D; Dickinson MH J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415 [TBL] [Abstract][Full Text] [Related]
7. Flight dynamics and control of evasive maneuvers: the fruit fly's takeoff. Zabala FA; Card GM; Fontaine EI; Dickinson MH; Murray RM IEEE Trans Biomed Eng; 2009 Sep; 56(9):2295-8. PubMed ID: 19643699 [TBL] [Abstract][Full Text] [Related]
8. Becoming airborne without legs: the kinematics of take-off in a flying snake, Chrysopelea paradisi. Socha JJ J Exp Biol; 2006 Sep; 209(Pt 17):3358-69. PubMed ID: 16916972 [TBL] [Abstract][Full Text] [Related]
9. Turning behaviour depends on frictional damping in the fruit fly Drosophila. Hesselberg T; Lehmann FO J Exp Biol; 2007 Dec; 210(Pt 24):4319-34. PubMed ID: 18055621 [TBL] [Abstract][Full Text] [Related]
10. Visually mediated motor planning in the escape response of Drosophila. Card G; Dickinson MH Curr Biol; 2008 Sep; 18(17):1300-7. PubMed ID: 18760606 [TBL] [Abstract][Full Text] [Related]
11. Take-off flight performance in the butterfly Pararge aegeria relative to sex and morphology: a quantitative genetic assessment. Berwaerts K; Matthysen E; Van Dyck H Evolution; 2008 Oct; 62(10):2525-33. PubMed ID: 18637838 [TBL] [Abstract][Full Text] [Related]
12. Ontogeny of flight initiation in the fly Drosophila melanogaster: implications for the giant fibre system. Hammond S; O'Shea M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1125-37. PubMed ID: 17851667 [TBL] [Abstract][Full Text] [Related]
13. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Ramamurti R; Sandberg WC J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147 [TBL] [Abstract][Full Text] [Related]
14. The role of experience in flight behaviour of Drosophila. Hesselberg T; Lehmann FO J Exp Biol; 2009 Oct; 212(Pt 20):3377-86. PubMed ID: 19801442 [TBL] [Abstract][Full Text] [Related]
15. Wing kinematics measurement and aerodynamics of hovering droneflies. Liu Y; Sun M J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290 [TBL] [Abstract][Full Text] [Related]
16. A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. Bender JA; Dickinson MH J Exp Biol; 2006 Dec; 209(Pt 23):4597-606. PubMed ID: 17114395 [TBL] [Abstract][Full Text] [Related]
17. Escape flight initiation in the fly. Hammond S; O'Shea M J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Apr; 193(4):471-6. PubMed ID: 17221263 [TBL] [Abstract][Full Text] [Related]
18. The free-flight response of Drosophila to motion of the visual environment. Mronz M; Lehmann FO J Exp Biol; 2008 Jul; 211(Pt 13):2026-45. PubMed ID: 18552291 [TBL] [Abstract][Full Text] [Related]
19. Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. Ristroph L; Berman GJ; Bergou AJ; Wang ZJ; Cohen I J Exp Biol; 2009 May; 212(Pt 9):1324-35. PubMed ID: 19376953 [TBL] [Abstract][Full Text] [Related]
20. Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. Gao N; Aono H; Liu H J Theor Biol; 2011 Feb; 270(1):98-111. PubMed ID: 21093456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]