These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 18204720)

  • 1. Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach.
    Moon S; Kim D; Sim E
    Appl Opt; 2008 Jan; 47(3):336-45. PubMed ID: 18204720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
    Xu M; Alrubaiee M; Gayen SK; Alfano RR
    Appl Opt; 2005 Apr; 44(10):1889-97. PubMed ID: 15818863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependent and multiple scattering in transmission and backscattering optical coherence tomography.
    Nguyen VD; Faber DJ; van der Pol E; van Leeuwen TG; Kalkman J
    Opt Express; 2013 Dec; 21(24):29145-56. PubMed ID: 24514466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion coefficient for photon transport in turbid media.
    Sahni DC; Dahl EB; Sjöstrand NG
    Phys Med Biol; 2003 Dec; 48(23):3969-76. PubMed ID: 14703170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation and mapping of tissue optical properties using modulated imaging.
    Cuccia DJ; Bevilacqua F; Durkin AJ; Ayers FR; Tromberg BJ
    J Biomed Opt; 2009; 14(2):024012. PubMed ID: 19405742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination.
    Joshi N; Donner C; Jensen HW
    Opt Lett; 2006 Apr; 31(7):936-8. PubMed ID: 16599217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple scattering in optical coherence tomography. I. Investigation and modeling.
    Karamata B; Laubscher M; Leutenegger M; Bourquin S; Lasser T; Lambelet P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1369-79. PubMed ID: 16053158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.
    Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q
    Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of low-coherence enhanced backscattering.
    Kim YL; Pradhan P; Subramanian H; Liu Y; Kim MH; Backman V
    Opt Lett; 2006 May; 31(10):1459-61. PubMed ID: 16642138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry.
    Chen N
    Appl Opt; 2007 Apr; 46(10):1597-603. PubMed ID: 17356601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography.
    Karamata B; Leutenegger M; Laubscher M; Bourquin S; Lasser T; Lambelet P
    J Opt Soc Am A Opt Image Sci Vis; 2005 Jul; 22(7):1380-8. PubMed ID: 16053159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary phase masking for optical interrogation of matters in turbid media.
    Wang F
    Opt Lett; 2008 Nov; 33(22):2587-9. PubMed ID: 19015676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.
    Sassaroli A
    Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced modelling of optical coherence tomography systems.
    Andersen PE; Thrane L; Yura HT; Tycho A; Jørgensen TM; Frosz MH
    Phys Med Biol; 2004 Apr; 49(7):1307-27. PubMed ID: 15128207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.