BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18204802)

  • 1. Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion.
    Wirth B; van Hedel HJ; Curt A
    J Neurol; 2008 Feb; 255(2):273-9. PubMed ID: 18204802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients.
    Wirth B; van Hedel HJ; Curt A
    Exp Brain Res; 2008 Nov; 191(3):353-61. PubMed ID: 18704382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.
    Varoqui D; Niu X; Mirbagheri MM
    J Neuroeng Rehabil; 2014 Mar; 11():46. PubMed ID: 24684813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity.
    Wirth B; van Hedel HJ; Curt A
    J Clin Neurophysiol; 2008 Aug; 25(4):210-7. PubMed ID: 18677185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury.
    Diehl P; Kliesch U; Dietz V; Curt A
    J Neurol; 2006 Jan; 253(1):51-7. PubMed ID: 16044213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle motor skill is intact in spinal cord injury, unlike stroke: implications for rehabilitation.
    van Hedel HJ; Wirth B; Curt A
    Neurology; 2010 Apr; 74(16):1271-8. PubMed ID: 20404308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibialis Anterior muscle coherence during controlled voluntary activation in patients with spinal cord injury: diagnostic potential for muscle strength, gait and spasticity.
    Bravo-Esteban E; Taylor J; Aleixandre M; Simon-Martínez C; Torricelli D; Pons JL; Gómez-Soriano J
    J Neuroeng Rehabil; 2014 Mar; 11():23. PubMed ID: 24594207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional implications of corticospinal tract impairment on gait after spinal cord injury.
    Barthélemy D; Knudsen H; Willerslev-Olsen M; Lundell H; Nielsen JB; Biering-Sørensen F
    Spinal Cord; 2013 Nov; 51(11):852-6. PubMed ID: 23939192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Biering-Sørensen F; Nielsen JB
    Prog Brain Res; 2015; 218():79-101. PubMed ID: 25890133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task.
    van Hedel HJ; Murer C; Dietz V; Curt A
    J Neurol; 2007 Aug; 254(8):1089-98. PubMed ID: 17431701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurophysiological examination of the corticospinal system and voluntary motor control in motor-incomplete human spinal cord injury.
    McKay WB; Lee DC; Lim HK; Holmes SA; Sherwood AM
    Exp Brain Res; 2005 Jun; 163(3):379-87. PubMed ID: 15616810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot control in incomplete SCI: distinction between paresis and dexterity.
    Wirth B; van Hedel H; Curt A
    Neurol Res; 2008 Feb; 30(1):52-60. PubMed ID: 18387262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary ankle flexor activity and adaptive coactivation gain is decreased by spasticity during subacute spinal cord injury.
    Gómez-Soriano J; Castellote JM; Pérez-Rizo E; Esclarin A; Taylor JS
    Exp Neurol; 2010 Aug; 224(2):507-16. PubMed ID: 20580713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticospinal Control of a Challenging Ankle Task in Incomplete Spinal Cord Injury.
    Cathomen A; Meier F; Lerch I; Killeen T; Zörner B; Curt A; Bolliger M
    J Neurotrauma; 2023 May; 40(9-10):952-964. PubMed ID: 36029211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slowed down: response time deficits in well-recovered subjects with incomplete spinal cord injury.
    Labruyère R; Zimmerli M; van Hedel HJ
    Arch Phys Med Rehabil; 2013 Oct; 94(10):2020-6. PubMed ID: 23602883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal estimation of intramuscular Tibialis Anterior coherence during subacute spinal cord injury: relationship with neurophysiological, functional and clinical outcome measures.
    Bravo-Esteban E; Taylor J; Aleixandre M; Simón-Martínez C; Torricelli D; Pons JL; Avila-Martín G; Galán-Arriero I; Gómez-Soriano J
    J Neuroeng Rehabil; 2017 Jun; 14(1):58. PubMed ID: 28619087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.