These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18205056)

  • 1. Detoxification of phenol through bound residue formation by birnessite in soil: transformation kinetics and toxicity.
    Jung JW; Lee S; Ryu H; Kang KH; Nam K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):255-61. PubMed ID: 18205056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reactivity of hydroxylated polycyclic aromatic hydrocarbons to birnessite in soil: reaction kinetics and nonextractable residue formation.
    Jung JW; Lee S; Ryu H; Nam K; Kang KH
    Environ Toxicol Chem; 2008 May; 27(5):1031-8. PubMed ID: 18419188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenanthrene metabolites bound to soil organic matter by birnessite following partial biodegradation.
    Lee S; Ryu H; Nam K
    Environ Toxicol Chem; 2009 May; 28(5):946-52. PubMed ID: 19125546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction kinetics and transformation products of 1-naphthol by Mn oxide-mediated oxidative-coupling reaction.
    Shin HS; Lim DM; Lee DH; Kang KH
    J Hazard Mater; 2009 Jun; 165(1-3):540-7. PubMed ID: 19026488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative transformation of aqueous phenolic mixtures by birnessite-mediated catalysis.
    Rao MA; Iamarino G; Scelza R; Russo F; Gianfreda L
    Sci Total Environ; 2008 Dec; 407(1):438-46. PubMed ID: 18812250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.
    Huang Q; Weber WJ
    Environ Sci Technol; 2004 Jan; 38(1):338-44. PubMed ID: 14740756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption and manganese-induced oxidative coupling of hydroxylated aromatic compounds by natural geosorbents.
    Selig H; Keinath TM; Weber WJ
    Environ Sci Technol; 2003 Sep; 37(18):4122-7. PubMed ID: 14524444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)pyrene removal from contaminated soil.
    Russo L; Rizzo L; Belgiorno V
    Chemosphere; 2012 May; 87(6):595-601. PubMed ID: 22305192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol.
    Zhang H; Ding H; Wang X; Zeng C; Lu A; Li Y; Wang C
    J Environ Sci (China); 2017 Feb; 52():259-267. PubMed ID: 28254046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative-coupling reaction of TNT reduction products by manganese oxide.
    Kang KH; Lim DM; Shin H
    Water Res; 2006 Mar; 40(5):903-10. PubMed ID: 16490230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of reduced daughter products from 2,4-dinitroanisole (DNAN) by Mn(IV) and Fe(III) oxides.
    Khatiwada R; Olivares C; Abrell L; Root RA; Sierra-Alvarez R; Field JA; Chorover J
    Chemosphere; 2018 Jun; 201():790-798. PubMed ID: 29550573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of aging on catalytic properties in mechanochemical degradation of pentachlorophenol by birnessite.
    Pizzigallo MD; Leo PD; Ancona V; Spagnuolo M; Schingaro E
    Chemosphere; 2011 Jan; 82(4):627-34. PubMed ID: 21035832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.
    Kang KH; Lim DM; Shin HS
    Water Sci Technol; 2008; 58(1):171-8. PubMed ID: 18653951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil.
    An J; Jeong S; Moon HS; Jho EH; Nam K
    J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(VI) Formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments.
    Rajapaksha AU; Vithanage M; Ok YS; Oze C
    Environ Sci Technol; 2013 Sep; 47(17):9722-9. PubMed ID: 23952582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitated desorption and stabilization of sediment-bound Pb and Cd in the presence of birnessite and apatite.
    Jho EH; Lee SB; Kim YJ; Nam K
    J Hazard Mater; 2011 Apr; 188(1-3):206-11. PubMed ID: 21330052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical approach to remove phenanthrene from a contaminated soil.
    Napola A; Pizzigallo MD; Di Leo P; Spagnuolo M; Ruggiero P
    Chemosphere; 2006 Nov; 65(9):1583-90. PubMed ID: 16678234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode.
    Yavuz Y; Koparal AS
    J Hazard Mater; 2006 Aug; 136(2):296-302. PubMed ID: 16427192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of m-aminophenol by birnessite (δ-MnO
    Huang W; Wu G; Xiao H; Song H; Gan S; Ruan S; Gao Z; Song J
    Environ Pollut; 2020 Jan; 256():113408. PubMed ID: 31662267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanochemical transformation of an organic ligand on mineral surfaces: the efficiency of birnessite in catechol degradation.
    Di Leo P; Pizzigallo MD; Ancona V; Di Benedetto F; Mesto E; Schingaro E; Ventruti G
    J Hazard Mater; 2012 Jan; 201-202():148-54. PubMed ID: 22178279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.