BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 18205296)

  • 1. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery.
    Li Z; Wu Y; Zhen S; Su K; Zhang L; Yang F; McDonough MA; Schofield CJ; Zhang X
    Angew Chem Weinheim Bergstr Ger; 2022 Nov; 134(45):e202211510. PubMed ID: 38505687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Inhibitor Synthesis and Screening by Fluorescence Polarization: An Efficient Approach for Accelerating Drug Discovery.
    Li Z; Wu Y; Zhen S; Su K; Zhang L; Yang F; McDonough MA; Schofield CJ; Zhang X
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202211510. PubMed ID: 36112310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
    Bahr G; González LJ; Vila AJ
    Chem Rev; 2021 Jul; 121(13):7957-8094. PubMed ID: 34129337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-Directed Dynamic Combinatorial Chemistry: An Efficient Strategy in Drug Design.
    Canal-Martín A; Pérez-Fernández R
    ACS Omega; 2020 Oct; 5(41):26307-26315. PubMed ID: 33110958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters.
    Ju LC; Cheng Z; Fast W; Bonomo RA; Crowder MW
    Trends Pharmacol Sci; 2018 Jul; 39(7):635-647. PubMed ID: 29680579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR-filtered virtual screening leads to non-metal chelating metallo-β-lactamase inhibitors.
    Li GB; Abboud MI; Brem J; Someya H; Lohans CT; Yang SY; Spencer J; Wareham DW; McDonough MA; Schofield CJ
    Chem Sci; 2017 Feb; 8(2):928-937. PubMed ID: 28451231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase.
    González MM; Kosmopoulou M; Mojica MF; Castillo V; Hinchliffe P; Pettinati I; Brem J; Schofield CJ; Mahler G; Bonomo RA; Llarrull LI; Spencer J; Vila AJ
    ACS Infect Dis; 2015 Nov; 1(11):544-54. PubMed ID: 27623409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-Directed Dynamic Combinatorial Chemistry: A Guide to Protein Ligand and Inhibitor Discovery.
    Huang R; Leung IK
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27438816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragment-based inhibitor discovery against β-lactamase.
    Nichols DA; Renslo AR; Chen Y
    Future Med Chem; 2014 Mar; 6(4):413-27. PubMed ID: 24635522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assay platform for clinically relevant metallo-β-lactamases.
    van Berkel SS; Brem J; Rydzik AM; Salimraj R; Cain R; Verma A; Owens RJ; Fishwick CW; Spencer J; Schofield CJ
    J Med Chem; 2013 Sep; 56(17):6945-53. PubMed ID: 23898798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Update on the Status of Potent Inhibitors of Metallo-β-Lactamases.
    Faridoon ; Ul Islam N
    Sci Pharm; 2013; 81(2):309-27. PubMed ID: 23833706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition.
    Bebrone C; Lassaux P; Vercheval L; Sohier JS; Jehaes A; Sauvage E; Galleni M
    Drugs; 2010 Apr; 70(6):651-79. PubMed ID: 20394454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches.
    Rose NR; Woon EC; Kingham GL; King ON; Mecinović J; Clifton IJ; Ng SS; Talib-Hardy J; Oppermann U; McDonough MA; Schofield CJ
    J Med Chem; 2010 Feb; 53(4):1810-8. PubMed ID: 20088513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three decades of beta-lactamase inhibitors.
    Drawz SM; Bonomo RA
    Clin Microbiol Rev; 2010 Jan; 23(1):160-201. PubMed ID: 20065329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fragment-based approach to probing adenosine recognition sites by using dynamic combinatorial chemistry.
    Scott DE; Dawes GJ; Ando M; Abell C; Ciulli A
    Chembiochem; 2009 Nov; 10(17):2772-9. PubMed ID: 19827080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1).
    Gareiss PC; Sobczak K; McNaughton BR; Palde PB; Thornton CA; Miller BL
    J Am Chem Soc; 2008 Dec; 130(48):16254-61. PubMed ID: 18998634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors.
    Liénard BM; Hüting R; Lassaux P; Galleni M; Frère JM; Schofield CJ
    J Med Chem; 2008 Feb; 51(3):684-8. PubMed ID: 18205296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases.
    Siemann S; Clarke AJ; Viswanatha T; Dmitrienko GI
    Biochemistry; 2003 Feb; 42(6):1673-83. PubMed ID: 12578382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols.
    Liénard BM; Garau G; Horsfall L; Karsisiotis AI; Damblon C; Lassaux P; Papamicael C; Roberts GC; Galleni M; Dideberg O; Frère JM; Schofield CJ
    Org Biomol Chem; 2008 Jul; 6(13):2282-94. PubMed ID: 18563261
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.