These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 18205300)
21. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines. Edder P; Ortelli D; Viret O; Cognard E; De Montmollin A; Zali O Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943 [TBL] [Abstract][Full Text] [Related]
22. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689 [TBL] [Abstract][Full Text] [Related]
23. Botrytized wines. Magyar I Adv Food Nutr Res; 2011; 63():147-206. PubMed ID: 21867895 [TBL] [Abstract][Full Text] [Related]
24. Impact of Marchal R; Salmon T; Gonzalez R; Kemp B; Vrigneau C; Williams P; Doco T Molecules; 2020 Jan; 25(3):. PubMed ID: 31979163 [No Abstract] [Full Text] [Related]
25. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. Li B; Wang W; Zong Y; Qin G; Tian S J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291 [TBL] [Abstract][Full Text] [Related]
26. Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Le Bourse D; Jégou S; Conreux A; Villaume S; Jeandet P Anal Chim Acta; 2010 May; 667(1-2):33-42. PubMed ID: 20441863 [TBL] [Abstract][Full Text] [Related]
27. Botrytis cinerea expression profile and metabolism differs between noble and grey rot of grapes. Otto M; Geml J; Hegyi ÁI; Hegyi-Kaló J; Pierneef R; Pogány M; Kun J; Gyenesei A; Váczy KZ Food Microbiol; 2022 Sep; 106():104037. PubMed ID: 35690441 [TBL] [Abstract][Full Text] [Related]
28. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Fernández-Acero FJ; Jorge I; Calvo E; Vallejo I; Carbú M; Camafeita E; Garrido C; López JA; Jorrin J; Cantoral JM Arch Microbiol; 2007 Mar; 187(3):207-15. PubMed ID: 17124592 [TBL] [Abstract][Full Text] [Related]
29. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. Modesti M; Alfieri G; Chieffo C; Mencarelli F; Vannini A; Catalani A; Chilosi G; Bellincontro A J Sci Food Agric; 2024 Mar; 104(4):2314-2325. PubMed ID: 37950679 [TBL] [Abstract][Full Text] [Related]
30. Identification of potential protein markers of noble rot infected grapes. Lorenzini M; Millioni R; Franchin C; Zapparoli G; Arrigoni G; Simonato B Food Chem; 2015 Jul; 179():170-4. PubMed ID: 25722151 [TBL] [Abstract][Full Text] [Related]
31. [New analytic criteria for the characterization of wines]. Sudraud P; Koziet J Ann Nutr Aliment; 1978; 32(5):1063-71. PubMed ID: 573085 [TBL] [Abstract][Full Text] [Related]
32. Characterization of unique and differentially expressed proteins in anthracnose-tolerant Florida hybrid bunch grapes. Vasanthaiah HK; Katam R; Basha SM Appl Biochem Biotechnol; 2009 Jun; 157(3):395-406. PubMed ID: 18931950 [TBL] [Abstract][Full Text] [Related]
33. Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. relationships with wine foamability. Dambrouck T; Marchal R; Cilindre C; Parmentier M; Jeandet P J Agric Food Chem; 2005 Nov; 53(22):8782-9. PubMed ID: 16248585 [TBL] [Abstract][Full Text] [Related]
34. Rapid In-Field Volatile Sampling for Detection of Jiang L; Dumlao MC; Donald WA; Steel CC; Schmidtke LM Molecules; 2023 Jul; 28(13):. PubMed ID: 37446889 [TBL] [Abstract][Full Text] [Related]
36. Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: identification and quantification of new sulfanyl alcohols. Sarrazin E; Shinkaruk S; Tominaga T; Bennetau B; Frérot E; Dubourdieu D J Agric Food Chem; 2007 Feb; 55(4):1437-44. PubMed ID: 17249683 [TBL] [Abstract][Full Text] [Related]
37. Study of amine composition of botrytized grape berries. Kiss J; Korbász M; Sass-Kiss A J Agric Food Chem; 2006 Nov; 54(23):8909-18. PubMed ID: 17090141 [TBL] [Abstract][Full Text] [Related]
38. Immunodetection of proteins from grapes and yeast in a white wine. Dambrouck T; Marchal R; Marchal-Delahaut L; Parmentier M; Maujean A; Jeandet P J Agric Food Chem; 2003 Apr; 51(9):2727-32. PubMed ID: 12696964 [TBL] [Abstract][Full Text] [Related]
39. Proteomic analysis of Chelidonium majus milky sap using two-dimensional gel electrophoresis and tandem mass spectrometry. Nawrot R; Kalinowski A; Gozdzicka-Jozefiak A Phytochemistry; 2007 Jun; 68(12):1612-22. PubMed ID: 17512564 [TBL] [Abstract][Full Text] [Related]
40. Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Maggi L; Mazzoleni V; Fumi MD; Salinas MR Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Mar; 25(3):265-9. PubMed ID: 18311620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]