These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18205300)

  • 41. Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea.
    Fernández-Acero FJ; Jorge I; Calvo E; Vallejo I; Carbú M; Camafeita E; López JA; Cantoral JM; Jorrín J
    Proteomics; 2006 Apr; 6 Suppl 1():S88-96. PubMed ID: 16544282
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study.
    Lee JE; Hwang GS; Van Den Berg F; Lee CH; Hong YS
    Anal Chim Acta; 2009 Aug; 648(1):71-6. PubMed ID: 19616691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sparkling wines: features and trends from tradition.
    Buxaderas S; López-Tamames E
    Adv Food Nutr Res; 2012; 66():1-45. PubMed ID: 22909977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression.
    Behan AT; Byrne C; Dunn MJ; Cagney G; Cotter DR
    Mol Psychiatry; 2009 Jun; 14(6):601-13. PubMed ID: 18268500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pesticides' influence on wine fermentation.
    Caboni P; Cabras P
    Adv Food Nutr Res; 2010; 59():43-62. PubMed ID: 20610173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection and prediction of Botrytis cinerea infection levels in wine grapes using volatile analysis.
    Jiang L; Qiu Y; Dumlao MC; Donald WA; Steel CC; Schmidtke LM
    Food Chem; 2023 Sep; 421():136120. PubMed ID: 37098308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes.
    Myung K; Hamilton-Kemp TR; Archbold DD
    J Agric Food Chem; 2007 Mar; 55(6):2182-8. PubMed ID: 17323971
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity.
    Zimdars S; Hitschler J; Schieber A; Weber F
    J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines.
    Vitalini S; Gardana C; Zanzotto A; Fico G; Faoro F; Simonetti P; Iriti M
    J Pineal Res; 2011 Oct; 51(3):278-85. PubMed ID: 21585520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of expression and comparative profile of normal placental tissue proteins and those in preeclampsia patients using proteomic approaches.
    Jin H; Ma KD; Hu R; Chen Y; Yang F; Yao J; Li XT; Yang PY
    Anal Chim Acta; 2008 Nov; 629(1-2):158-64. PubMed ID: 18940332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Smoke-derived taint in wine: effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine.
    Kennison KR; Wilkinson KL; Williams HG; Smith JH; Gibberd MR
    J Agric Food Chem; 2007 Dec; 55(26):10897-901. PubMed ID: 18052239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precipitation of champagne base wine proteins prior to 2D electrophoresis.
    Cilindre C
    Methods Mol Biol; 2014; 1072():755-64. PubMed ID: 24136561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of tannic acid on Lactobacillus hilgardii analysed by a proteomic approach.
    Bossi A; Rinalducci S; Zolla L; Antonioli P; Righetti PG; Zapparoli G
    J Appl Microbiol; 2007 Mar; 102(3):787-95. PubMed ID: 17309629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production.
    Seo HY; Chang YJ; Chung YJ; Kim KS
    J Microbiol Biotechnol; 2008 Aug; 18(8):1368-76. PubMed ID: 18756096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Release of nucleotides and nucleosides during yeast autolysis: kinetics and potential impact on flavor.
    Charpentier C; Aussenac J; Charpentier M; Prome JC; Duteurtre B; Feuillat M
    J Agric Food Chem; 2005 Apr; 53(8):3000-7. PubMed ID: 15826051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. It's time to pop a cork on champagne's proteome!
    Cilindre C; Fasoli E; D'Amato A; Liger-Belair G; Righetti PG
    J Proteomics; 2014 Jun; 105():351-62. PubMed ID: 24594285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins.
    Chakravarti B; Oseguera M; Dalal N; Fathy P; Mallik B; Raval A; Chakravarti DN
    Arch Biochem Biophys; 2008 Jun; 474(1):22-31. PubMed ID: 18284913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity.
    Cherrad S; Girard V; Dieryckx C; Gonçalves IR; Dupuy JW; Bonneu M; Rascle C; Job C; Job D; Vacher S; Poussereau N
    Metallomics; 2012 Aug; 4(8):835-46. PubMed ID: 22706205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of label-free shotgun nUPLC-MS(E) and 2-DE approaches in the study of Botrytis cinerea mycelium.
    Gonzalez-Fernandez R; Aloria K; Arizmendi JM; Jorrin-Novo JV
    J Proteome Res; 2013 Jun; 12(6):3042-56. PubMed ID: 23627497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a qPCR method for classification of botrytized grape berries originated from Tokaj wine region.
    Belák Á; Kovács M; Ittzés A; Pomázi A
    Food Microbiol; 2024 Oct; 123():104582. PubMed ID: 39038888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.