These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18205346)

  • 1. Toward quantitative simulations of carbon monoxide escape pathways in myoglobin.
    Elber R; Gibson QH
    J Phys Chem B; 2008 May; 112(19):6147-54. PubMed ID: 18205346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity principle of the ligand escape process from a two-gate tunnel in myoglobin: molecular dynamics simulation.
    Sheu SY
    J Chem Phys; 2006 Apr; 124(15):154711. PubMed ID: 16674255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies of ligand diffusion in globins: I. Leghemoglobin.
    Czerminski R; Elber R
    Proteins; 1991; 10(1):70-80. PubMed ID: 2062829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal cavity fluctuations in myoglobin: protein motion and ligand diffusion.
    Carlson ML; Regan RM; Gibson QH
    Biochemistry; 1996 Jan; 35(4):1125-36. PubMed ID: 8573567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO escape from myoglobin with metadynamics simulations.
    Ceccarelli M; Anedda R; Casu M; Ruggerone P
    Proteins; 2008 May; 71(3):1231-6. PubMed ID: 18041761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin.
    Chu K; Vojtchovský J; McMahon BH; Sweet RM; Berendzen J; Schlichting I
    Nature; 2000 Feb; 403(6772):921-3. PubMed ID: 10706294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of carbon monoxide migration and binding in solvated myoglobin as revealed by molecular dynamics simulations and quantum mechanical calculations.
    D'Abramo M; Di Nola A; Amadei A
    J Phys Chem B; 2009 Dec; 113(51):16346-53. PubMed ID: 19928980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the network of pathways of CO diffusion in myoglobin.
    Maragliano L; Cottone G; Ciccotti G; Vanden-Eijnden E
    J Am Chem Soc; 2010 Jan; 132(3):1010-7. PubMed ID: 20039718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The escape process of carbon monoxide from myoglobin to solution at physiological temperature.
    Nishihara Y; Sakakura M; Kimura Y; Terazima M
    J Am Chem Soc; 2004 Sep; 126(38):11877-88. PubMed ID: 15382923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-energy barriers in MbCO rebinding.
    Banushkina P; Meuwly M
    J Phys Chem B; 2005 Sep; 109(35):16911-7. PubMed ID: 16853152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic proofreading by the cavity system of myoglobin: protection from poisoning.
    Radding W; Phillips GN
    Bioessays; 2004 Apr; 26(4):422-33. PubMed ID: 15057940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of heme propionate groups to the conformational dynamics associated with CO photodissociation from horse heart myoglobin.
    Belogortseva N; Rubio M; Terrell W; Miksovská J
    J Inorg Biochem; 2007 Jul; 101(7):977-86. PubMed ID: 17499362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulations of carbon monoxide photodissociation in myoglobin: structural interpretation of the B states.
    Meller J; Elber R
    Biophys J; 1998 Feb; 74(2 Pt 1):789-802. PubMed ID: 9533692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme proteins: the role of solvent in the dynamics of gates and portals.
    Scorciapino MA; Robertazzi A; Casu M; Ruggerone P; Ceccarelli M
    J Am Chem Soc; 2010 Apr; 132(14):5156-63. PubMed ID: 20095556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the L29F mutation on the ligand migration kinetics in crystallized myoglobin as revealed by molecular dynamics simulations.
    Anselmi M; Di Nola A; Amadei A
    Proteins; 2011 Mar; 79(3):867-79. PubMed ID: 21287618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0-->A(1-3) transition from ten 400 picosecond simulations.
    Loccisano AE; Acevedo O; DeChancie J; Schulze BG; Evanseck JD
    J Mol Graph Model; 2004 May; 22(5):369-76. PubMed ID: 15099833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural dynamics of myoglobin.
    Brunori M; Bourgeois D; Vallone B
    J Struct Biol; 2004 Sep; 147(3):223-34. PubMed ID: 15450292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand dynamics in myoglobin: calculation of infrared spectra for photodissociated NO.
    Nutt DR; Meuwly M
    Chemphyschem; 2004 Nov; 5(11):1710-8. PubMed ID: 15580931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of myoglobin: an infrared kinetic study of ligand migration in mutants YQR and YQRF.
    Lamb DC; Arcovito A; Nienhaus K; Minkow O; Draghi F; Brunori M; Nienhaus GU
    Biophys Chem; 2004 Apr; 109(1):41-58. PubMed ID: 15059658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic structural relaxation and its correlation with the excess energy diffusion in the incipient process of photodissociated MbCO: high-resolution analysis via ensemble perturbation method.
    Takayanagi M; Okumura H; Nagaoka M
    J Phys Chem B; 2007 Feb; 111(4):864-9. PubMed ID: 17249830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.