These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18205422)

  • 21. Microbubble Formulations: Synthesis, Stability, Modeling and Biomedical Applications.
    Upadhyay A; Dalvi SV
    Ultrasound Med Biol; 2019 Feb; 45(2):301-343. PubMed ID: 30527395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in lipid-encapsulated microbubble population during continuous infusion and methods to maintain consistency.
    Kaya M; Gregory TS; Dayton PA
    Ultrasound Med Biol; 2009 Oct; 35(10):1748-55. PubMed ID: 19632760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution.
    Shih R; Lee AP
    Langmuir; 2016 Mar; 32(8):1939-46. PubMed ID: 26820229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
    Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP
    Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.
    Salari A; Gnyawali V; Griffiths IM; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Nov; 13(46):8796-8806. PubMed ID: 29135012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization.
    Farook U; Stride E; Edirisinghe MJ
    J R Soc Interface; 2009 Mar; 6(32):271-7. PubMed ID: 18647738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Filling Gas on Subharmonic Emissions of Phospholipid Ultrasound Contrast Agents.
    Kanbar E; Fouan D; Sennoga CA; Doinikov AA; Bouakaz A
    Ultrasound Med Biol; 2017 May; 43(5):1004-1015. PubMed ID: 28214036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity.
    Helfield B; Chen X; Qin B; Villanueva FS
    J Acoust Soc Am; 2016 Jan; 139(1):204-14. PubMed ID: 26827018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Honey, I shrunk the bubbles: microfluidic vacuum shrinkage of lipid-stabilized microbubbles.
    Gnyawali V; Moon BU; Kieda J; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2017 Jun; 13(22):4011-4016. PubMed ID: 28379267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombinant protein-stabilized monodisperse microbubbles with tunable size using a valve-based microfluidic device.
    Angilè FE; Vargo KB; Sehgal CM; Hammer DA; Lee D
    Langmuir; 2014 Oct; 30(42):12610-8. PubMed ID: 25265041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance frequency of microbubbles: effect of viscosity.
    Khismatullin DB
    J Acoust Soc Am; 2004 Sep; 116(3):1463-73. PubMed ID: 15478411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbubble dissolution in a multigas environment.
    Kwan JJ; Borden MA
    Langmuir; 2010 May; 26(9):6542-8. PubMed ID: 20067292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications.
    Shih R; Bardin D; Martz TD; Sheeran PS; Dayton PA; Lee AP
    Lab Chip; 2013 Dec; 13(24):4816-26. PubMed ID: 24162868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of microbubbles for diagnostic and therapeutic applications using a novel device.
    Pancholi K; Stride E; Edirisinghe M
    J Drug Target; 2008 Jul; 16(6):494-501. PubMed ID: 18604662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-speed optical observations of contrast agent destruction.
    Bouakaz A; Versluis M; de Jong N
    Ultrasound Med Biol; 2005 Mar; 31(3):391-9. PubMed ID: 15749563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Property and contrast-enhancement effects of lipid ultrasound contrast agent: a preliminary experimental study.
    Zhao YZ; Luo YK; Zhang Y; Mei XG; Tang J
    Ultrasound Med Biol; 2005 Apr; 31(4):537-43. PubMed ID: 15831332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores.
    Miller DL
    J Acoust Soc Am; 1998 Oct; 104(4):2498-505. PubMed ID: 10491710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of microbubbles prepared by co-axial electrohydrodynamic atomisation.
    Farook U; Stride E; Edirisinghe MJ
    Eur Biophys J; 2009 Jun; 38(5):713-8. PubMed ID: 19132365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.