These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18205422)

  • 61. Microfluidic system for high throughput characterisation of echogenic particles.
    Rademeyer P; Carugo D; Lee JY; Stride E
    Lab Chip; 2015 Jan; 15(2):417-28. PubMed ID: 25367757
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents.
    Soysal U; Azevedo PN; Bureau F; Aubry A; Carvalho MS; Pessoa ACSN; Torre LG; Couture O; Tourin A; Fink M; Tabeling P
    Ultrasound Med Biol; 2022 Aug; 48(8):1484-1495. PubMed ID: 35568594
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow.
    Klibanov AL; Rychak JJ; Yang WC; Alikhani S; Li B; Acton S; Lindner JR; Ley K; Kaul S
    Contrast Media Mol Imaging; 2006; 1(6):259-66. PubMed ID: 17191766
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities.
    Park JI; Jagadeesan D; Williams R; Oakden W; Chung S; Stanisz GJ; Kumacheva E
    ACS Nano; 2010 Nov; 4(11):6579-86. PubMed ID: 20968309
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second.
    van Elburg B; Collado-Lara G; Bruggert GW; Segers T; Versluis M; Lajoinie G
    Rev Sci Instrum; 2021 Mar; 92(3):035110. PubMed ID: 33820052
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.
    Borden MA; Kruse DE; Caskey CF; Zhao S; Dayton PA; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1992-2002. PubMed ID: 16422411
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single-particle optical sizing of microbubbles.
    Satinover SJ; Dove JD; Borden MA
    Ultrasound Med Biol; 2014 Jan; 40(1):138-47. PubMed ID: 24139917
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optimization of the size distribution and myocardial contrast effect of perfluorocarbon-filled albumin microbubbles by lyophilization under continuous negative pressure.
    Chen S; Wang Z; Zhou YT; Grayburn PA
    J Am Soc Echocardiogr; 2000 Aug; 13(8):748-53. PubMed ID: 10936818
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultrasound attenuation in encapsulated microbubble suspensions: The multiple scattering effects.
    Chen J; Zhu Z
    Ultrasound Med Biol; 2006 Jun; 32(6):961-9. PubMed ID: 16785017
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Needle size and injection rate impact microbubble contrast agent population.
    Talu E; Powell RL; Longo ML; Dayton PA
    Ultrasound Med Biol; 2008 Jul; 34(7):1182-5. PubMed ID: 18295967
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Italian Society of Cardiovascular Echography (SIEC) Consensus Conference on the state of the art of contrast echocardiography.
    Ital Heart J; 2004 Apr; 5(4):309-34. PubMed ID: 15185894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation.
    Kobayashi D; Hayashida Y; Sano K; Terasaka K
    Ultrason Sonochem; 2011 Sep; 18(5):1193-6. PubMed ID: 21186134
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A novel microfluidic chip for assessing dynamic adhesion behavior of cell-targeting microbubbles.
    Yan F; Li X; Jiang C; Jin Q; Zhang Z; Shandas R; Wu J; Liu X; Zheng H
    Ultrasound Med Biol; 2014 Jan; 40(1):148-57. PubMed ID: 24210864
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications.
    Nakayama T; Kurosawa Y; Furui S; Kerman K; Kobayashi M; Rao SR; Yonezawa Y; Nakano K; Hino A; Yamamura S; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2006 Nov; 386(5):1327-33. PubMed ID: 16896609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Self-concentrating buoyant glass microbubbles for high sensitivity immunoassays.
    Juang DS; Hsu CH
    Lab Chip; 2016 Feb; 16(3):459-64. PubMed ID: 26620967
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery.
    Filho WD; Schneider FK; Morales RE
    Biomed Eng Online; 2012 Sep; 11():71. PubMed ID: 22995578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.