These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the evaluation of quadratic response functions at the four-component Hartree-Fock level: nonlinear polarization and two-photon absorption in bromo- and iodobenzene. Henriksson J; Ekström U; Norman P J Chem Phys; 2006 Jun; 124(21):214311. PubMed ID: 16774411 [TBL] [Abstract][Full Text] [Related]
5. Quadratic response functions in the time-dependent four-component Hartree-Fock approximation. Norman P; Jensen HJ J Chem Phys; 2004 Oct; 121(13):6145-54. PubMed ID: 15446908 [TBL] [Abstract][Full Text] [Related]
6. Role of noncollinear magnetization for the first-order electric-dipole hyperpolarizability at the four-component Kohn-Sham density functional theory level. Bast R; Saue T; Henriksson J; Norman P J Chem Phys; 2009 Jan; 130(2):024109. PubMed ID: 19154021 [TBL] [Abstract][Full Text] [Related]
7. Computational strategies for a four-component Dirac-Kohn-Sham program: implementation and first applications. Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM J Chem Phys; 2005 May; 122(18):184109. PubMed ID: 15918696 [TBL] [Abstract][Full Text] [Related]
8. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor. Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709 [TBL] [Abstract][Full Text] [Related]
9. Density functional calculations of molecular parity-violating effects within the zeroth-order regular approximation. Berger R; van Wüllen C J Chem Phys; 2005 Apr; 122(13):134316. PubMed ID: 15847474 [TBL] [Abstract][Full Text] [Related]
10. Two-photon absorption in the relativistic four-component Hartree-Fock approximation. Henriksson J; Norman P; Jensen HJ J Chem Phys; 2005 Mar; 122(11):114106. PubMed ID: 15836200 [TBL] [Abstract][Full Text] [Related]
11. Time-dependent four-component relativistic density functional theory for excitation energies. Gao J; Liu W; Song B; Liu C J Chem Phys; 2004 Oct; 121(14):6658-66. PubMed ID: 15473721 [TBL] [Abstract][Full Text] [Related]
12. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory. Romaniello P; de Boeij PL J Chem Phys; 2005 Apr; 122(16):164303. PubMed ID: 15945680 [TBL] [Abstract][Full Text] [Related]
13. Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies. Tao J; Tretiak S; Zhu JX J Chem Phys; 2008 Feb; 128(8):084110. PubMed ID: 18315036 [TBL] [Abstract][Full Text] [Related]
14. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids. Romaniello P; de Boeij PL J Chem Phys; 2007 Nov; 127(17):174111. PubMed ID: 17994811 [TBL] [Abstract][Full Text] [Related]
15. Developing the random phase approximation into a practical post-Kohn-Sham correlation model. Furche F J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948 [TBL] [Abstract][Full Text] [Related]
17. Localization scheme for relativistic spinors. Ciupka J; Hanrath M; Dolg M J Chem Phys; 2011 Dec; 135(24):244101. PubMed ID: 22225138 [TBL] [Abstract][Full Text] [Related]
18. Adiabatic connection for strictly correlated electrons. Liu ZF; Burke K J Chem Phys; 2009 Sep; 131(12):124124. PubMed ID: 19791869 [TBL] [Abstract][Full Text] [Related]
19. Communication: two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation. Krause K; Klopper W J Chem Phys; 2013 Nov; 139(19):191102. PubMed ID: 24320308 [TBL] [Abstract][Full Text] [Related]
20. Linear complex polarization propagator in a four-component Kohn-Sham framework. Villaume S; Saue T; Norman P J Chem Phys; 2010 Aug; 133(6):064105. PubMed ID: 20707559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]