These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18205465)

  • 1. A channel Brownian pump powered by an unbiased external force.
    Ai BQ; Liu LG
    J Chem Phys; 2008 Jan; 128(2):024706. PubMed ID: 18205465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian pump in nonlinear diffusive media.
    Ai BQ; Liu LG
    J Phys Chem B; 2008 Aug; 112(31):9540-5. PubMed ID: 18613724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamically enforced entropic Brownian pump.
    Ai BQ; He YF; Li FG; Zhong WR
    J Chem Phys; 2013 Apr; 138(15):154107. PubMed ID: 23614412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation.
    Ai BQ; Wu JC
    J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current in a three-dimensional periodic tube with unbiased forces.
    Ai BQ; Liu LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051114. PubMed ID: 17279884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian pump powered by a white-noise flashing ratchet.
    Gomez-Marin A; Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031108. PubMed ID: 18517330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian escape and force-driven transport through entropic barriers: Particle size effect.
    Cheng KL; Sheng YJ; Tsao HK
    J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian transport of finite size particles in a periodic channel coexisting with an energetic potential.
    Chen Q; Ai BQ; Xiong JW
    Chaos; 2014 Sep; 24(3):033119. PubMed ID: 25273199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of an ac electro-osmotic pump with step microelectrodes.
    Kim BJ; Lee SH; Rezazadeh S; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056302. PubMed ID: 21728642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal noise can facilitate energy transformation in the presence of entropic barriers.
    Ai BQ; Xie HZ; Liu LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061126. PubMed ID: 17677239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical mechanical theory for steady state systems. VIII. General theory for a Brownian particle driven by a time- and space-varying force.
    Attard P; Gray-Weale A
    J Chem Phys; 2008 Mar; 128(11):114509. PubMed ID: 18361593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous pump against concentration gradient.
    Xu ZC; Zheng DQ; Ai BQ; Zhong WR
    Sci Rep; 2016 Mar; 6():23414. PubMed ID: 26996204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairs.
    Du E; Manoochehri S
    Electrophoresis; 2008 Dec; 29(24):5017-25. PubMed ID: 19130586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of particles by pulsed dielectrophoresis.
    Cui HH; Voldman J; He XF; Lim KM
    Lab Chip; 2009 Aug; 9(16):2306-12. PubMed ID: 19636460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport reversal in a thermal ratchet.
    Ai B; Wang L; Liu L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031101. PubMed ID: 16241405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatically driven Brownian pumps.
    Rozenbaum VM; Makhnovskii YA; Shapochkina IV; Sheu SY; Yang DY; Lin SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012104. PubMed ID: 23944411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-assisted classical adiabatic pumping in a symmetric periodic potential.
    Usmani O; Lutz E; Büttiker M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021111. PubMed ID: 12241154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on flames propagating through zirconium particle clouds.
    Yin Y; Sun J; Ding Y; Guo S; He X
    J Hazard Mater; 2009 Oct; 170(1):340-4. PubMed ID: 19477589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.