These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 18205468)
1. A theoretical study of the cohesion of noble gases on graphite. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Jan; 128(2):024709. PubMed ID: 18205468 [TBL] [Abstract][Full Text] [Related]
2. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. Bichoutskaia E; Pyper NC J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212 [TBL] [Abstract][Full Text] [Related]
3. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. Rajesh C; Majumder C; Mizuseki H; Kawazoe Y J Chem Phys; 2009 Mar; 130(12):124911. PubMed ID: 19334893 [TBL] [Abstract][Full Text] [Related]
4. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms. Tang LY; Yan ZC; Shi TY; Babb JF; Mitroy J J Chem Phys; 2012 Mar; 136(10):104104. PubMed ID: 22423825 [TBL] [Abstract][Full Text] [Related]
5. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities. Smalø HS; Astrand PO; Jensen L J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831 [TBL] [Abstract][Full Text] [Related]
6. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment. Pacheco AB; Reyes A; Micha DA J Chem Phys; 2006 Oct; 125(15):154313. PubMed ID: 17059261 [TBL] [Abstract][Full Text] [Related]
7. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces. de Lara-Castells MP; Bartolomei M; Mitrushchenkov AO; Stoll H J Chem Phys; 2015 Nov; 143(19):194701. PubMed ID: 26590547 [TBL] [Abstract][Full Text] [Related]
8. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections. Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. Kang HS J Am Chem Soc; 2005 Jul; 127(27):9839-43. PubMed ID: 15998088 [TBL] [Abstract][Full Text] [Related]
10. Effect of the adsorption of oxygen on electronic structures and geometrical parameters of armchair single-wall carbon nanotubes: a density functional study. Rafati AA; Hashemianzadeh SM; Nojini ZB J Colloid Interface Sci; 2009 Aug; 336(1):1-12. PubMed ID: 19394629 [TBL] [Abstract][Full Text] [Related]
11. A post-Hartree-Fock model of intermolecular interactions. Johnson ER; Becke AD J Chem Phys; 2005 Jul; 123(2):24101. PubMed ID: 16050735 [TBL] [Abstract][Full Text] [Related]
13. An analysis of the correlation energy contribution to the interaction energy of inert gas dimers. Snook I; Per MC; Russo SP J Chem Phys; 2008 Oct; 129(16):164109. PubMed ID: 19045249 [TBL] [Abstract][Full Text] [Related]
14. Heuristic overlap-exchange model of noble gas chemical shifts. Adrian FJ J Chem Phys; 2004 May; 120(18):8469-75. PubMed ID: 15267772 [TBL] [Abstract][Full Text] [Related]
15. Structures and interaction energies of stacked graphene-nucleobase complexes. Antony J; Grimme S Phys Chem Chem Phys; 2008 May; 10(19):2722-9. PubMed ID: 18464987 [TBL] [Abstract][Full Text] [Related]
16. Simple DFT model of clusters embedded in rare gas matrix: trapping sites and spectroscopic properties of Na embedded in Ar. Gervais B; Giglio E; Jacquet E; Ipatov A; Reinhard PG; Suraud E J Chem Phys; 2004 Nov; 121(17):8466-80. PubMed ID: 15511170 [TBL] [Abstract][Full Text] [Related]
17. Van der Waals-corrected density functional theory: benchmarking for hydrogen-nanotube and nanotube-nanotube interactions. Du AJ; Smith SC Nanotechnology; 2005 Oct; 16(10):2118-23. PubMed ID: 20817982 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. Cabria I; López MJ; Alonso JA J Chem Phys; 2005 Nov; 123(20):204721. PubMed ID: 16351307 [TBL] [Abstract][Full Text] [Related]
19. New insights into the interaction of hydrogen atoms with boron-substituted carbon. Zhu ZH; Lu GQ; Hatori H J Phys Chem B; 2006 Jan; 110(3):1249-55. PubMed ID: 16471671 [TBL] [Abstract][Full Text] [Related]
20. Lithium adsorption on graphite from density functional theory calculations. Valencia F; Romero AH; Ancilotto F; Silvestrelli PL J Phys Chem B; 2006 Aug; 110(30):14832-41. PubMed ID: 16869593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]