These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

710 related articles for article (PubMed ID: 18205491)

  • 1. Energy-consistent relativistic pseudopotentials for the 4d elements: atomic and molecular applications.
    Figgen D; Peterson KA; Stoll H
    J Chem Phys; 2008 Jan; 128(3):034110. PubMed ID: 18205491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt.
    Figgen D; Peterson KA; Dolg M; Stoll H
    J Chem Phys; 2009 Apr; 130(16):164108. PubMed ID: 19405562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn.
    Balabanov NB; Peterson KA
    J Chem Phys; 2005 Aug; 123(6):64107. PubMed ID: 16122300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods.
    Balabanov NB; Peterson KA
    J Chem Phys; 2006 Aug; 125(7):074110. PubMed ID: 16942325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio thermochemistry involving heavy atoms: an investigation of the reactions Hg + IX (X = I, Br, Cl, O).
    Shepler BC; Balabanov NB; Peterson KA
    J Phys Chem A; 2005 Nov; 109(45):10363-72. PubMed ID: 16833332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative ab initio studies on the molecular structure and spectroscopic properties of FeF2: Single reference versus multireference methods.
    Solomonik VG; Stanton JF; Boggs JE
    J Chem Phys; 2008 Jun; 128(24):244104. PubMed ID: 18601314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties.
    Jorge FE; Canal Neto A; Camiletti GG; Machado SF
    J Chem Phys; 2009 Feb; 130(6):064108. PubMed ID: 19222268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ab initio study of the lowest electronic states of yttrium dicarbide, YC2.
    Puzzarini C; Peterson KA
    J Chem Phys; 2005 Feb; 122(8):84323. PubMed ID: 15836055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: benchmarks and new pseudopotential-based correlation consistent basis sets.
    Peterson KA; Yousaf KE
    J Chem Phys; 2010 Nov; 133(17):174116. PubMed ID: 21054015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic effects determined using the Douglas-Kroll contracted basis sets and correlation consistent basis sets with small-core relativistic pseudopotentials.
    Yockel S; Wilson AK
    J Chem Phys; 2005 May; 122(17):174310. PubMed ID: 15910035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate thermochemical properties for energetic materials applications. I. Heats of formation of nitrogen-containing heterocycles and energetic precursor molecules from electronic structure theory.
    Gutowski KE; Rogers RD; Dixon DA
    J Phys Chem A; 2006 Oct; 110(42):11890-7. PubMed ID: 17048822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formations of iron carbide (FeC) and its cation (FeC+).
    Lau KC; Chang YC; Lam CS; Ng CY
    J Phys Chem A; 2009 Dec; 113(52):14321-8. PubMed ID: 19775110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the performance of two-component energy-consistent pseudopotentials in atomic Fock-space coupled cluster calculations.
    Figgen D; Wedig A; Stoll H; Dolg M; Eliav E; Kaldor U
    J Chem Phys; 2008 Jan; 128(2):024106. PubMed ID: 18205442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of singlet ground and low-lying electronic excited states of phosphaethyne and isophosphaethyne.
    Ingels JB; Turney JM; Richardson NA; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2006 Sep; 125(10):104306. PubMed ID: 16999525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New relativistic ANO basis sets for transition metal atoms.
    Roos BO; Lindh R; Malmqvist PA; Veryazov V; Widmark PO
    J Phys Chem A; 2005 Jul; 109(29):6575-9. PubMed ID: 16834004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational and diffusion Monte Carlo study of post-d group 13-17 elements.
    Al-Saidi WA
    J Chem Phys; 2008 Aug; 129(6):064316. PubMed ID: 18715078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third-order Douglas-Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: applications to diatomic and triatomic hydrides.
    Hirata S; Yanai T; de Jong WA; Nakajima T; Hirao K
    J Chem Phys; 2004 Feb; 120(7):3297-310. PubMed ID: 15268484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.