BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18206302)

  • 1. Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples.
    Kim GY; Shim J; Kang MS; Moon SH
    J Hazard Mater; 2008 Aug; 156(1-3):141-7. PubMed ID: 18206302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level.
    Kim GY; Shim J; Kang MS; Moon SH
    J Environ Monit; 2008 May; 10(5):632-7. PubMed ID: 18449400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP
    Analyst; 2011 Mar; 136(6):1216-21. PubMed ID: 21240422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos.
    Li H; Xie C; Li S; Xu K
    Colloids Surf B Biointerfaces; 2012 Jan; 89():175-81. PubMed ID: 21955508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detection.
    Oliveira TM; Barroso MF; Morais S; Araújo M; Freire C; de Lima-Neto P; Correia AN; Oliveira MB; Delerue-Matos C
    Bioelectrochemistry; 2014 Aug; 98():20-9. PubMed ID: 24642204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles.
    Carralero V; Mena ML; Gonzalez-Cortés A; Yáñez-Sedeño P; Pingarrón JM
    Biosens Bioelectron; 2006 Dec; 22(5):730-6. PubMed ID: 16569498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric phenol biosensor based on covalent immobilization of tyrosinase on Au nanoparticle modified screen printed carbon electrodes.
    Nurul Karim M; Lee HJ
    Talanta; 2013 Nov; 116():991-6. PubMed ID: 24148506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode.
    Xie C; Li H; Li S; Wu J; Zhang Z
    Anal Chem; 2010 Jan; 82(1):241-9. PubMed ID: 19938838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate.
    Li C; Ya Y; Zhan G
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):340-5. PubMed ID: 20015621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes.
    de Albuquerque YD; Ferreira LF
    Anal Chim Acta; 2007 Jul; 596(2):210-21. PubMed ID: 17631099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared luminescence quenching method for the detection of phenolic compounds using N-acetyl-L-cysteine-protected gold nanoparticles-tyrosinase hybrid material.
    Dong W; Dong C; Shuang S; Choi MM
    Biosens Bioelectron; 2010 Jan; 25(5):1043-8. PubMed ID: 19833500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode.
    Kannan P; John SA
    Anal Chim Acta; 2010 Mar; 663(2):158-64. PubMed ID: 20206005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study.
    Bonanni A; Pumera M; Miyahara Y
    Phys Chem Chem Phys; 2011 Mar; 13(11):4980-6. PubMed ID: 21258669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water.
    Campanhã Vicentini F; Garcia LL; Figueiredo-Filho LC; Janegitz BC; Fatibello-Filho O
    Enzyme Microb Technol; 2016 Mar; 84():17-23. PubMed ID: 26827770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis.
    Majid E; Hrapovic S; Liu Y; Male KB; Luong JH
    Anal Chem; 2006 Feb; 78(3):762-9. PubMed ID: 16448049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode.
    Parham H; Rahbar N
    J Hazard Mater; 2010 May; 177(1-3):1077-84. PubMed ID: 20097474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.
    Xiao F; Zhao F; Li J; Yan R; Yu J; Zeng B
    Anal Chim Acta; 2007 Jul; 596(1):79-85. PubMed ID: 17616243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction.
    Gong J; Miao X; Zhou T; Zhang L
    Talanta; 2011 Sep; 85(3):1344-9. PubMed ID: 21807193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite.
    Gong J; Wang L; Zhang L
    Biosens Bioelectron; 2009 Mar; 24(7):2285-8. PubMed ID: 19111456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface.
    Du D; Chen S; Cai J; Zhang A
    Talanta; 2008 Jan; 74(4):766-72. PubMed ID: 18371707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.