BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18206428)

  • 1. Intermittent hypoxia reduces cerebrovascular sensitivity to isocapnic hypoxia in humans.
    Querido JS; Godwin JB; Sheel AW
    Respir Physiol Neurobiol; 2008 Mar; 161(1):1-9. PubMed ID: 18206428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory, cerebrovascular and cardiovascular responses to isocapnic hypoxia.
    Battisti-Charbonney A; Fisher JA; Duffin J
    Respir Physiol Neurobiol; 2011 Dec; 179(2-3):259-68. PubMed ID: 21939786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiorespiratory and cerebrovascular responses to acute poikilocapnic hypoxia following intermittent and continuous exposure to hypoxia in humans.
    Ainslie PN; Barach A; Cummings KJ; Murrell C; Hamlin M; Hellemans J
    J Appl Physiol (1985); 2007 May; 102(5):1953-61. PubMed ID: 17234798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia.
    Foster GE; McKenzie DC; Milsom WK; Sheel AW
    J Physiol; 2005 Sep; 567(Pt 2):689-99. PubMed ID: 15975977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiovascular and cerebrovascular responses to acute isocapnic and poikilocapnic hypoxia in humans.
    Steinback CD; Poulin MJ
    J Appl Physiol (1985); 2008 Feb; 104(2):482-9. PubMed ID: 18263856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intermittent hypoxia on the cerebrovascular responses to submaximal exercise in humans.
    Querido JS; Rupert JL; McKenzie DC; Sheel AW
    Eur J Appl Physiol; 2009 Feb; 105(3):403-9. PubMed ID: 18998153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrovascular Response to CO2 Following 10 Days of Intermittent Hypoxia in Humans.
    Querido JS; Welch JF; Ayas NT; Sheel AW
    Aerosp Med Hum Perform; 2015 Sep; 86(9):782-6. PubMed ID: 26388084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral and muscle tissue oxygenation in acute hypoxic ventilatory response test.
    Peltonen JE; Kowalchuk JM; Paterson DH; DeLorey DS; duManoir GR; Petrella RJ; Shoemaker JK
    Respir Physiol Neurobiol; 2007 Jan; 155(1):71-81. PubMed ID: 16697712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of intermittent hypoxia on human vascular responses during sleep.
    Beaudin AE; Hanly PJ; Raneri JK; Younes M; Pun M; Anderson TJ; Poulin MJ
    Exp Neurol; 2022 Jan; 347():113897. PubMed ID: 34655575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity.
    Ainslie PN; Hamlin M; Hellemans J; Rasmussen P; Ogoh S
    Am J Physiol Regul Integr Comp Physiol; 2008 Nov; 295(5):R1613-22. PubMed ID: 18768767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans.
    Kolb JC; Ainslie PN; Ide K; Poulin MJ
    Respir Physiol Neurobiol; 2004 Jul; 141(2):191-9. PubMed ID: 15239969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.
    Peltonen JE; Paterson DH; Shoemaker JK; Delorey DS; Dumanoir GR; Petrella RJ; Kowalchuk JM
    Respir Physiol Neurobiol; 2009 Oct; 169(1):24-35. PubMed ID: 19729079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolating the independent effects of hypoxia and hyperventilation-induced hypocapnia on cerebral haemodynamics and cognitive function.
    Friend AT; Balanos GM; Lucas SJE
    Exp Physiol; 2019 Oct; 104(10):1482-1493. PubMed ID: 31342596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term intermittent hypoxia increases sympathetic activity and chemosensitivity during acute hypoxia in humans.
    Lusina SJ; Kennedy PM; Inglis JT; McKenzie DC; Ayas NT; Sheel AW
    J Physiol; 2006 Sep; 575(Pt 3):961-70. PubMed ID: 16809359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide.
    Ainslie PN; Poulin MJ
    J Appl Physiol (1985); 2004 Jul; 97(1):149-59. PubMed ID: 15004003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O(2) chemosensitivity.
    Hildebrandt W; Ottenbacher A; Schuster M; Swenson ER; Bärtsch P
    J Appl Physiol (1985); 2000 Feb; 88(2):599-610. PubMed ID: 10658028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent hypoxia increases arterial blood pressure in humans through a Renin-Angiotensin system-dependent mechanism.
    Foster GE; Hanly PJ; Ahmed SB; Beaudin AE; Pialoux V; Poulin MJ
    Hypertension; 2010 Sep; 56(3):369-77. PubMed ID: 20625082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of two different intermittent hypoxia protocols on ventilatory responses to hypoxia and carbon dioxide at rest.
    Koehle M; Sheel W; Milsom W; McKenzie D
    Adv Exp Med Biol; 2008; 605():218-23. PubMed ID: 18085275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia.
    Zhang P; Shi X; Downey HF
    Exp Biol Med (Maywood); 2015 Jul; 240(7):961-8. PubMed ID: 25504012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclooxygenases 1 and 2 differentially regulate blood pressure and cerebrovascular responses to acute and chronic intermittent hypoxia: implications for sleep apnea.
    Beaudin AE; Pun M; Yang C; Nicholl DD; Steinback CD; Slater DM; Wynne-Edwards KE; Hanly PJ; Ahmed SB; Poulin MJ
    J Am Heart Assoc; 2014 May; 3(3):e000875. PubMed ID: 24815497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.