These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 18207162)
1. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength. Gloss LM; Topping TB; Binder AK; Lohman JR J Mol Biol; 2008 Mar; 376(5):1451-62. PubMed ID: 18207162 [TBL] [Abstract][Full Text] [Related]
2. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. Wright DB; Banks DD; Lohman JR; Hilsenbeck JL; Gloss LM J Mol Biol; 2002 Oct; 323(2):327-44. PubMed ID: 12381324 [TBL] [Abstract][Full Text] [Related]
3. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy. Hoeltzli SD; Frieden C Biochemistry; 1996 Dec; 35(51):16843-51. PubMed ID: 8988023 [TBL] [Abstract][Full Text] [Related]
4. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures. Clark AC; Frieden C J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410 [TBL] [Abstract][Full Text] [Related]
5. GroEL-mediated folding of structurally homologous dihydrofolate reductases. Clark AC; Frieden C J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487 [TBL] [Abstract][Full Text] [Related]
6. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study. Hoeltzli SD; Frieden C Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060 [TBL] [Abstract][Full Text] [Related]
7. The chaperonin GroEL binds to late-folding non-native conformations present in native Escherichia coli and murine dihydrofolate reductases. Clark AC; Frieden C J Mol Biol; 1999 Jan; 285(4):1777-88. PubMed ID: 9917411 [TBL] [Abstract][Full Text] [Related]
8. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Dams T; Jaenicke R Biochemistry; 1999 Jul; 38(28):9169-78. PubMed ID: 10413491 [TBL] [Abstract][Full Text] [Related]
9. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Clark AC; Hugo E; Frieden C Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551 [TBL] [Abstract][Full Text] [Related]
10. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases. Loveridge EJ; Behiry EM; Swanwick RS; Allemann RK J Am Chem Soc; 2009 May; 131(20):6926-7. PubMed ID: 19419144 [TBL] [Abstract][Full Text] [Related]
11. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase. Hicks SN; Smiley RD; Hamilton JB; Howell EE Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480 [TBL] [Abstract][Full Text] [Related]
12. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Swanwick RS; Shrimpton PJ; Allemann RK Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854 [TBL] [Abstract][Full Text] [Related]
13. Reshaping the folding energy landscape by chloride salt: impact on molten-globule formation and aggregation behavior of carbonic anhydrase. Borén K; Grankvist H; Hammarström P; Carlsson U FEBS Lett; 2004 May; 566(1-3):95-9. PubMed ID: 15147875 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594 [TBL] [Abstract][Full Text] [Related]
15. Apparent Debye-Huckel electrostatic effects in the folding of a simple, single domain protein. de Los Rios MA; Plaxco KW Biochemistry; 2005 Feb; 44(4):1243-50. PubMed ID: 15667218 [TBL] [Abstract][Full Text] [Related]
16. Expression, reactivation, and purification of enzymes from Haloferax volcanii in Escherichia coli. Connaris H; Chaudhuri JB; Danson MJ; Hough DW Biotechnol Bioeng; 1999 Jul; 64(1):38-45. PubMed ID: 10397837 [TBL] [Abstract][Full Text] [Related]
17. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme. von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431 [TBL] [Abstract][Full Text] [Related]
18. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Maglia G; Javed MH; Allemann RK Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545 [TBL] [Abstract][Full Text] [Related]
19. Three-state kinetic folding mechanism of the H2A/H2B histone heterodimer: the N-terminal tails affect the transition state between a dimeric intermediate and the native dimer. Placek BJ; Gloss LM J Mol Biol; 2005 Jan; 345(4):827-36. PubMed ID: 15588829 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Patra AK; Udgaonkar JB Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]