These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 18207444)
1. Constitutive modelling of inelastic behaviour of cortical bone. Natali AN; Carniel EL; Pavan PG Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444 [TBL] [Abstract][Full Text] [Related]
2. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
3. Constitutive formulation and analysis of heel pad tissues mechanics. Natali AN; Fontanella CG; Carniel EL Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698 [TBL] [Abstract][Full Text] [Related]
4. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077 [TBL] [Abstract][Full Text] [Related]
5. A three-dimensional elastic plastic damage constitutive law for bone tissue. Garcia D; Zysset PK; Charlebois M; Curnier A Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Natali AN; Pavan PG; Carniel EL; Lucisano ME; Taglialavoro G Med Eng Phys; 2005 Apr; 27(3):209-14. PubMed ID: 15694603 [TBL] [Abstract][Full Text] [Related]
7. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057 [TBL] [Abstract][Full Text] [Related]
8. Estimating material parameters of human skin in vivo. Kvistedal YA; Nielsen PM Biomech Model Mechanobiol; 2009 Feb; 8(1):1-8. PubMed ID: 18040732 [TBL] [Abstract][Full Text] [Related]
9. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
10. A transversally isotropic elasto-damage constitutive model for the periodontal ligament. Natali AN; Pavan PG; Carniel EL; Dorow C Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953 [TBL] [Abstract][Full Text] [Related]
11. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related]
12. Investigation of bone inelastic response in interaction phenomena with dental implants. Natali AN; Carniel EL; Pavan PG Dent Mater; 2008 Apr; 24(4):561-9. PubMed ID: 18207565 [TBL] [Abstract][Full Text] [Related]
13. The effect of strain rate on the mechanical properties of human cortical bone. Hansen U; Zioupos P; Simpson R; Currey JD; Hynd D J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis. Natali AN; Carniel EL; Gregersen H Med Eng Phys; 2009 Nov; 31(9):1056-62. PubMed ID: 19651531 [TBL] [Abstract][Full Text] [Related]
15. Validation of a finite element model of the human metacarpal. Barker DS; Netherway DJ; Krishnan J; Hearn TC Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the mechanical behaviour of the foot skin. Fontanella CG; Carniel EL; Forestiero A; Natali AN Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962 [TBL] [Abstract][Full Text] [Related]
17. Simulation of creep in non-homogenous samples of human cortical bone. Ertas AH; Winwood K; Zioupos P; Cotton JR Comput Methods Biomech Biomed Engin; 2012; 15(10):1121-8. PubMed ID: 21574078 [TBL] [Abstract][Full Text] [Related]
18. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Abdel-Wahab AA; Alam K; Silberschmidt VV J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728 [TBL] [Abstract][Full Text] [Related]
19. Flexural and creep properties of human jaw compact bone for FEA studies. Vitins V; Dobelis M; Middleton J; Limbert G; Knets I Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950 [TBL] [Abstract][Full Text] [Related]
20. Numeric simulation of time-dependent remodeling of bone around loaded oral implants. Eser A; Tonuk E; Akca K; Cehreli MC Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]