BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 18207444)

  • 21. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization.
    Cherraf-Schweyer C; Maurice G; Taghite M; Taous K
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):195-207. PubMed ID: 17558648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive models for impacted morsellised cortico-cancellous bone.
    Phillips A; Pankaj P; May F; Taylor K; Howie C; Usmani A
    Biomaterials; 2006 Mar; 27(9):2162-70. PubMed ID: 16309740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM
    J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of biaxial tension tests of soft tissues.
    Bursa J; Zemanek M
    Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anisotropic constitutive equations and experimental tensile behavior of brain tissue.
    Velardi F; Fraternali F; Angelillo M
    Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.
    Evans SL
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):319-32. PubMed ID: 19199169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strain patterns during tensile, compressive, and shear fatigue of human cortical bone and implications for bone biomechanics.
    Winwood K; Zioupos P; Currey JD; Cotton JR; Taylor M
    J Biomed Mater Res A; 2006 Nov; 79(2):289-97. PubMed ID: 16817209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence of entropic elasticity of human bone trabeculae at low strains.
    Marinozzi F; Bini F; Marinozzi A
    J Biomech; 2011 Mar; 44(5):988-91. PubMed ID: 21144521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties.
    Kourtis LC; Carter DR; Kesari H; Beaupre GS
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):463-76. PubMed ID: 19230145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.