These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362 [TBL] [Abstract][Full Text] [Related]
3. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis. Tüzün E; Saini SS; Morgan BP; Christadoss P J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125 [TBL] [Abstract][Full Text] [Related]
4. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H J Immunol; 1999 Apr; 162(7):3775-81. PubMed ID: 10201893 [TBL] [Abstract][Full Text] [Related]
5. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis. Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409 [TBL] [Abstract][Full Text] [Related]
6. ICOS is essential for the development of experimental autoimmune myasthenia gravis. Scott BG; Yang H; Tüzün E; Dong C; Flavell RA; Christadoss P J Neuroimmunol; 2004 Aug; 153(1-2):16-25. PubMed ID: 15265659 [TBL] [Abstract][Full Text] [Related]
7. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. Balasa B; Deng C; Lee J; Christadoss P; Sarvetnick N J Immunol; 1998 Sep; 161(6):2856-62. PubMed ID: 9743346 [TBL] [Abstract][Full Text] [Related]
8. CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis. Allman W; Qi H; Saini SS; Li J; Tuzun E; Christadoss P J Neuroimmunol; 2012 Aug; 249(1-2):1-7. PubMed ID: 22626443 [TBL] [Abstract][Full Text] [Related]
9. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis. Qi H; Li J; Allman W; Saini SS; Tüzün E; Wu X; Estes DM; Christadoss P J Neuroimmunol; 2011 May; 234(1-2):165-7. PubMed ID: 21481948 [TBL] [Abstract][Full Text] [Related]
10. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Duan RS; Adikari SB; Huang YM; Link H; Xiao BG Neurobiol Dis; 2004 Jul; 16(2):461-7. PubMed ID: 15193302 [TBL] [Abstract][Full Text] [Related]
11. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686 [TBL] [Abstract][Full Text] [Related]
12. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis. Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908 [TBL] [Abstract][Full Text] [Related]
13. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Christadoss P; Tüzün E; Li J; Saini SS; Yang H Ann N Y Acad Sci; 2008; 1132():210-9. PubMed ID: 18567870 [TBL] [Abstract][Full Text] [Related]
14. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis. Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426 [TBL] [Abstract][Full Text] [Related]
15. Naturally occurring CD4+CD25+ regulatory T cells prevent but do not improve experimental myasthenia gravis. Nessi V; Nava S; Ruocco C; Toscani C; Mantegazza R; Antozzi C; Baggi F J Immunol; 2010 Nov; 185(9):5656-67. PubMed ID: 20881192 [TBL] [Abstract][Full Text] [Related]
16. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor. Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218 [TBL] [Abstract][Full Text] [Related]
17. T-bet deficiency decreases susceptibility to experimental myasthenia gravis. Liu R; Hao J; Dayao CS; Shi FD; Campagnolo DI Exp Neurol; 2009 Dec; 220(2):366-73. PubMed ID: 19818352 [TBL] [Abstract][Full Text] [Related]
19. The role of B-cells in experimental myasthenia gravis in mice. Wang HB; Li H; He B; Bakheit M; Levi M; Wahren B; Berglöf A; Sandstedt K; Link H; Shi FD Biomed Pharmacother; 1999 Jun; 53(5-6):227-33. PubMed ID: 10424244 [TBL] [Abstract][Full Text] [Related]
20. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. Deng C; Goluszko E; Tüzün E; Yang H; Christadoss P J Immunol; 2002 Jul; 169(2):1077-83. PubMed ID: 12097416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]