These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18207589)

  • 1. Simulated financial losses of classical swine fever epidemics in the Finnish pig production sector.
    Niemi JK; Lehtonen H; Pietola K; Lyytikäinen T; Raulo S
    Prev Vet Med; 2008 May; 84(3-4):194-212. PubMed ID: 18207589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark.
    Boklund A; Goldbach SG; Uttenthal A; Alban L
    Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated detection of syndromic classical swine fever on a Finnish pig-breeding farm.
    Raulo SM; Lyytikäinen T
    Epidemiol Infect; 2007 Feb; 135(2):218-27. PubMed ID: 17291361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-effectiveness of measures to prevent classical swine fever introduction into The Netherlands.
    De Vos CJ; Saatkamp HW; Huirne RB
    Prev Vet Med; 2005 Sep; 70(3-4):235-56. PubMed ID: 15927286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Risk increase and economic consequences of the introduction of contagious animal diseases in the Netherlands].
    Horst HS
    Tijdschr Diergeneeskd; 1999 Feb; 124(4):111-5. PubMed ID: 10081808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes.
    Meuwissen MP; Horst SH; Huirne RB; Dijkhuizen AA
    Prev Vet Med; 1999 Dec; 42(3-4):249-70. PubMed ID: 10619159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation and validation of an economic module in the Be-FAST model to predict costs generated by livestock disease epidemics: Application to classical swine fever epidemics in Spain.
    Fernández-Carrión E; Ivorra B; Martínez-López B; Ramos AM; Sánchez-Vizcaíno JM
    Prev Vet Med; 2016 Apr; 126():66-73. PubMed ID: 26875754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The eradication of African swine fever in Brazil, 1978-1984].
    Lyra TM
    Rev Sci Tech; 2006 Apr; 25(1):93-103. PubMed ID: 16796039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effectiveness of classical swine fever surveillance programmes in The Netherlands.
    Klinkenberg D; Nielen M; Mourits MC; de Jong MC
    Prev Vet Med; 2005 Jan; 67(1):19-37. PubMed ID: 15698906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expected economic impact of selected exotic diseases on the pig industry of Australia.
    Garner MG; Whan IF; Gard GP; Phillips D
    Rev Sci Tech; 2001 Dec; 20(3):671-85. PubMed ID: 11732410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of Cross-border Impacts Resulting from Classical Swine Fever Epidemics within the Netherlands and Germany.
    Hop GE; Mourits MC; Oude Lansink AG; Saatkamp HW
    Transbound Emerg Dis; 2016 Feb; 63(1):e80-e102. PubMed ID: 24894372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997-1998 classical swine fever epidemic in The Netherlands. II. Comparison of control strategies.
    Nielen M; Jalvingh AW; Meuwissen MP; Horst SH; Dijkhuizen AA
    Prev Vet Med; 1999 Dec; 42(3-4):297-317. PubMed ID: 10619161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread.
    Bigras-Poulin M; Barfod K; Mortensen S; Greiner M
    Prev Vet Med; 2007 Jul; 80(2-3):143-65. PubMed ID: 17383759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated effect of pig-population density on epidemic size and choice of control strategy for classical swine fever epidemics in The Netherlands.
    Mangen MJ; Nielen M; Burrell AM
    Prev Vet Med; 2002 Dec; 56(2):141-63. PubMed ID: 12450686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. African swine fever in Mozambique: review, risk factors and considerations for control.
    Penrith ML; Lopes Pereira C; Lopes da Silva MM; Quembo C; Nhamusso A; Banze J
    Onderstepoort J Vet Res; 2007 Jun; 74(2):149-60. PubMed ID: 17883201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical swine fever outbreak containment using antiviral supplementation: a potential alternative to emergency vaccination and stamping-out.
    Ribbens S; Goris N; Neyts J; Dewulf J
    Prev Vet Med; 2012 Sep; 106(1):34-41. PubMed ID: 22465433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.