These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 18208472)
1. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. Amusan IO; Rich PJ; Menkir A; Housley T; Ejeta G New Phytol; 2008; 178(1):157-166. PubMed ID: 18208472 [TBL] [Abstract][Full Text] [Related]
2. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. Gurney AL; Grimanelli D; Kanampiu F; Hoisington D; Scholes JD; Press MC New Phytol; 2003 Dec; 160(3):557-568. PubMed ID: 33873658 [TBL] [Abstract][Full Text] [Related]
3. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. Yoneyama K; Arakawa R; Ishimoto K; Kim HI; Kisugi T; Xie X; Nomura T; Kanampiu F; Yokota T; Ezawa T; Yoneyama K New Phytol; 2015 May; 206(3):983-989. PubMed ID: 25754513 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide association study of Striga resistance in early maturing white tropical maize inbred lines. Adewale SA; Badu-Apraku B; Akinwale RO; Paterne AA; Gedil M; Garcia-Oliveira AL BMC Plant Biol; 2020 May; 20(1):203. PubMed ID: 32393176 [TBL] [Abstract][Full Text] [Related]
5. Hydroxamic acids: New players in the multifactorial mechanisms of maize resistance to Striga hermonthica. Marcotrigiano AR; Carluccio AV; Unachukwu N; Adeoti SR; Abdulsalam T; Gedil M; Menkir A; Gisel A; Stavolone L Plant Physiol Biochem; 2023 Nov; 204():108134. PubMed ID: 37883916 [TBL] [Abstract][Full Text] [Related]
6. Genetic diversity analysis of tropical and sub-tropical maize germplasm for Striga resistance and agronomic traits with SNP markers. Dossa EN; Shimelis H; Shayanowako AIT PLoS One; 2024; 19(8):e0306263. PubMed ID: 39106250 [TBL] [Abstract][Full Text] [Related]
7. Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. Yoshida S; Shirasu K New Phytol; 2009; 183(1):180-189. PubMed ID: 19402875 [TBL] [Abstract][Full Text] [Related]
8. The Structural Integrity of Lignin Is Crucial for Resistance against Mutuku JM; Cui S; Hori C; Takeda Y; Tobimatsu Y; Nakabayashi R; Mori T; Saito K; Demura T; Umezawa T; Yoshida S; Shirasu K Plant Physiol; 2019 Apr; 179(4):1796-1809. PubMed ID: 30670602 [No Abstract] [Full Text] [Related]
9. New Rice for Africa (NERICA) cultivars exhibit different levels of post-attachment resistance against the parasitic weeds Striga hermonthica and Striga asiatica. Cissoko M; Boisnard A; Rodenburg J; Press MC; Scholes JD New Phytol; 2011 Dec; 192(4):952-963. PubMed ID: 21883232 [TBL] [Abstract][Full Text] [Related]
10. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots. Ueda H; Sugimoto Y Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571 [TBL] [Abstract][Full Text] [Related]
11. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. Gurney AL; Slate J; Press MC; Scholes JD New Phytol; 2006; 169(1):199-208. PubMed ID: 16390431 [TBL] [Abstract][Full Text] [Related]
13. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines. Stanley AE; Menkir A; Ifie B; Paterne AA; Unachukwu NN; Meseka S; Mengesha WA; Bossey B; Kwadwo O; Tongoona PB; Oladejo O; Sneller C; Gedil M Sci Rep; 2021 Dec; 11(1):24193. PubMed ID: 34921181 [TBL] [Abstract][Full Text] [Related]
14. Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants. Kubo M; Ueda H; Park P; Kawaguchi M; Sugimoto Y J Plant Physiol; 2009 Mar; 166(4):353-62. PubMed ID: 18760498 [TBL] [Abstract][Full Text] [Related]
15. Combining ability of extra-early maturing pro-vitamin A maize (Zea mays L.) inbred lines and performance of derived hybrids under Striga hermonthica infestation and low soil nitrogen. Makinde SA; Badu-Apraku B; Ariyo OJ; Porbeni JB PLoS One; 2023; 18(2):e0280814. PubMed ID: 36827415 [TBL] [Abstract][Full Text] [Related]
16. Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. Khan ZR; Hassanali A; Overholt W; Khamis TM; Hooper AM; Pickett JA; Wadhams LJ; Woodcock CM J Chem Ecol; 2002 Sep; 28(9):1871-85. PubMed ID: 12449513 [TBL] [Abstract][Full Text] [Related]
17. Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines. Maazou AS; Gedil M; Adetimirin VO; Mengesha W; Meseka S; Ilesanmi O; Agre PA; Menkir A BMC Plant Biol; 2022 Jun; 22(1):286. PubMed ID: 35681124 [TBL] [Abstract][Full Text] [Related]
18. Integrating Fusarium oxysporum f. sp. strigae into cereal cropping systems in Africa. Venne J; Beed F; Avocanh A; Watson A Pest Manag Sci; 2009 May; 65(5):572-80. PubMed ID: 19288458 [TBL] [Abstract][Full Text] [Related]
19. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477 [TBL] [Abstract][Full Text] [Related]