These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18208491)

  • 1. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea.
    Schumacher J; Viaud M; Simon A; Tudzynski B
    Mol Microbiol; 2008 Mar; 67(5):1027-50. PubMed ID: 18208491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH).
    Schulze Gronover C; Schorn C; Tudzynski B
    Mol Plant Microbe Interact; 2004 May; 17(5):537-46. PubMed ID: 15141958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial.
    Dalmais B; Schumacher J; Moraga J; LE Pêcheur P; Tudzynski B; Collado IG; Viaud M
    Mol Plant Pathol; 2011 Aug; 12(6):564-79. PubMed ID: 21722295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea.
    Viaud M; Brunet-Simon A; Brygoo Y; Pradier JM; Levis C
    Mol Microbiol; 2003 Dec; 50(5):1451-65. PubMed ID: 14651630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
    Harren K; Schumacher J; Tudzynski B
    PLoS One; 2012; 7(7):e41761. PubMed ID: 22844520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G; Berndt P; Hahn M
    Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea.
    Schumacher J; Kokkelink L; Huesmann C; Jimenez-Teja D; Collado IG; Barakat R; Tudzynski P; Tudzynski B
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1443-59. PubMed ID: 18842094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea.
    Gronover CS; Kasulke D; Tudzynski P; Tudzynski B
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1293-302. PubMed ID: 11763127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants.
    Schumacher J; de Larrinoa IF; Tudzynski B
    Eukaryot Cell; 2008 Apr; 7(4):584-601. PubMed ID: 18263765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus
    Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters.
    Simon A; Dalmais B; Morgant G; Viaud M
    Fungal Genet Biol; 2013 Mar; 52():9-19. PubMed ID: 23396263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites.
    Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic profiling of Botrytis cinerea conidial germination.
    González-Rodríguez VE; Liñeiro E; Colby T; Harzen A; Garrido C; Cantoral JM; Schmidt J; Fernández-Acero FJ
    Arch Microbiol; 2015 Mar; 197(2):117-33. PubMed ID: 25141797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)
    Porquier A; Morgant G; Moraga J; Dalmais B; Luyten I; Simon A; Pradier JM; Amselem J; Collado IG; Viaud M
    Fungal Genet Biol; 2016 Nov; 96():33-46. PubMed ID: 27721016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.
    Malmierca MG; Izquierdo-Bueno I; McCormick SP; Cardoza RE; Alexander NJ; Barua J; Lindo L; Casquero PA; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2016 Nov; 18(11):3991-4004. PubMed ID: 27312485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata.
    Tsai HC; Chung KR
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1453-1465. PubMed ID: 24763426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity.
    Klimpel A; Gronover CS; Williamson B; Stewart JA; Tudzynski B
    Mol Plant Pathol; 2002 Nov; 3(6):439-50. PubMed ID: 20569351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.