BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18208817)

  • 1. Mechanisms of base selection by the Escherichia coli mispaired uracil glycosylase.
    Liu P; Theruvathu JA; Darwanto A; Lao VV; Pascal T; Goddard W; Sowers LC
    J Biol Chem; 2008 Apr; 283(14):8829-36. PubMed ID: 18208817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG.
    Liu P; Burdzy A; Sowers LC
    Chem Res Toxicol; 2002 Aug; 15(8):1001-9. PubMed ID: 12184783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
    Darwanto A; Theruvathu JA; Sowers JL; Rogstad DK; Pascal T; Goddard W; Sowers LC
    J Biol Chem; 2009 Jun; 284(23):15835-46. PubMed ID: 19324873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential modes of DNA binding by mismatch uracil DNA glycosylase from Escherichia coli: implications for abasic lesion processing and enzyme communication in the base excision repair pathway.
    Grippon S; Zhao Q; Robinson T; Marshall JJ; O'Neill RJ; Manning H; Kennedy G; Dunsby C; Neil M; Halford SE; French PM; Baldwin GS
    Nucleic Acids Res; 2011 Apr; 39(7):2593-603. PubMed ID: 21112870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of local duplex stability and N6-methyladenine on uracil recognition by mismatch-specific uracil-DNA glycosylase (Mug).
    Valinluck V; Liu P; Burdzy A; Ryu J; Sowers LC
    Chem Res Toxicol; 2002 Dec; 15(12):1595-601. PubMed ID: 12482242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Escherichia coli mismatch-specific uracil DNA glycosylase as a robust xanthine DNA glycosylase.
    Lee HW; Brice AR; Wright CB; Dominy BN; Cao W
    J Biol Chem; 2010 Dec; 285(53):41483-90. PubMed ID: 20852254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases.
    Talhaoui I; Couvé S; Ishchenko AA; Kunz C; Schär P; Saparbaev M
    Nucleic Acids Res; 2013 Jan; 41(2):912-23. PubMed ID: 23209024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells.
    Neddermann P; Jiricny J
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1642-6. PubMed ID: 8127859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common mechanism of action for the N-glycosylase activity of DNA N-glycosylase/AP lyases from E. coli and T4.
    Purmal AA; Rabow LE; Lampman GW; Cunningham RP; Kow YW
    Mutat Res; 1996 Dec; 364(3):193-207. PubMed ID: 8960131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase.
    Gallinari P; Jiricny J
    Nature; 1996 Oct; 383(6602):735-8. PubMed ID: 8878487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of the mutagenic DNA oxidation product, 5-formyluracil.
    Liu P; Burdzy A; Sowers LC
    DNA Repair (Amst); 2003 Feb; 2(2):199-210. PubMed ID: 12531390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enigmatic thymine DNA glycosylase.
    Cortázar D; Kunz C; Saito Y; Steinacher R; Schär P
    DNA Repair (Amst); 2007 Apr; 6(4):489-504. PubMed ID: 17116428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a thwarted mismatch glycosylase DNA repair complex.
    Barrett TE; Schärer OD; Savva R; Brown T; Jiricny J; Verdine GL; Pearl LH
    EMBO J; 1999 Dec; 18(23):6599-609. PubMed ID: 10581234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid excision of oxidized adenine by human thymine DNA glycosylase.
    Servius HW; Pidugu LS; Sherman ME; Drohat AC
    J Biol Chem; 2023 Jan; 299(1):102756. PubMed ID: 36460098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II).
    Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H
    J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
    Morgan MT; Bennett MT; Drohat AC
    J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily.
    Tarantino ME; Dow BJ; Drohat AC; Delaney S
    DNA Repair (Amst); 2018 Dec; 72():56-63. PubMed ID: 30268365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs.
    Lee DH; Liu Y; Lee HW; Xia B; Brice AR; Park SH; Balduf H; Dominy BN; Cao W
    Nucleic Acids Res; 2015 Jan; 43(2):1081-9. PubMed ID: 25550433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.