BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18209791)

  • 1. Squaraines as unique reporters for SERRS multiplexing.
    Stokes RJ; Ingram A; Gallagher J; Armstrong DR; Smith WE; Graham D
    Chem Commun (Camb); 2008 Feb; (5):567-9. PubMed ID: 18209791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.
    Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K
    Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERRS coded nanoparticles for biomolecular labelling with wavelength-tunable discrimination.
    McKenzie F; Ingram A; Stokes R; Graham D
    Analyst; 2009 Mar; 134(3):549-56. PubMed ID: 19238293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H NMR spectral evidence for a specific host-guest complexation induced charge localization in squaraine dyes.
    Ajayaghosh A; Arunkumar E
    Org Lett; 2005 Jul; 7(15):3135-8. PubMed ID: 16018604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward
    Yin Y; Mei R; Wang Y; Zhao X; Yu Q; Liu W; Chen L
    Anal Chem; 2020 Nov; 92(21):14814-14821. PubMed ID: 33045167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative enhanced Raman scattering of labeled DNA from gold and silver nanoparticles.
    Stokes RJ; Macaskill A; Lundahl PJ; Smith WE; Faulds K; Graham D
    Small; 2007 Sep; 3(9):1593-601. PubMed ID: 17647254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid cell mapping using nanoparticles and SERRS.
    Stokes RJ; McKenzie F; McFarlane E; Ricketts A; Tetley L; Faulds K; Alexander J; Graham D
    Analyst; 2009 Jan; 134(1):170-5. PubMed ID: 19082189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging.
    Nagy-Simon T; Potara M; Craciun AM; Licarete E; Astilean S
    J Colloid Interface Sci; 2018 May; 517():239-250. PubMed ID: 29428811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of excitation laser intensity dependence of blinking SERRS of thiacarbocyanine adsorbed on single silver nanoaggregates by using a power law with an exponential function.
    Kitahama Y; Tanaka Y; Itoh T; Ozaki Y
    Chem Commun (Camb); 2011 Apr; 47(13):3888-90. PubMed ID: 21336353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel glycoconjugated squaraine dyes for selective optical imaging of cancer cells.
    Shimi M; Sankar V; Rahim MKA; Nitha PR; Das S; Radhakrishnan KV; Raghu KG
    Chem Commun (Camb); 2017 May; 53(39):5433-5436. PubMed ID: 28462980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes.
    Yang M; Chen T; Lau WS; Wang Y; Tang Q; Yang Y; Chen H
    Small; 2009 Feb; 5(2):198-202. PubMed ID: 19040220
    [No Abstract]   [Full Text] [Related]  

  • 14. Detection and Identification of Estrogen Based on Surface-Enhanced Resonance Raman Scattering (SERRS).
    Liu Y; Chen Y; Zhang Y; Kou Q; Zhang Y; Wang Y; Chen L; Sun Y; Zhang H; MeeJung Y
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29857591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexing potential of NIR resonant and non-resonant Raman reporters for bio-imaging applications.
    Eremina OE; Schaefer S; Czaja AT; Awad S; Lim MA; Zavaleta C
    Analyst; 2023 Nov; 148(23):5915-5925. PubMed ID: 37850265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis.
    Kalaivani G; Sivanesan A; Kannan A; Sevvel R
    Colloids Surf B Biointerfaces; 2016 Oct; 146():722-30. PubMed ID: 27434160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.
    Praveen BB; Steuwe C; Mazilu M; Dholakia K; Mahajan S
    Analyst; 2013 May; 138(10):2816-20. PubMed ID: 23562981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS.
    Ingram A; Moore BD; Graham D
    Bioorg Med Chem Lett; 2009 Mar; 19(6):1569-71. PubMed ID: 19243940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental determination of the absorption and emission spectra of a prototypical indolenine-based squaraine dye.
    Borrelli R; Ellena S; Barolo C
    Phys Chem Chem Phys; 2014 Feb; 16(6):2390-8. PubMed ID: 24352799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles.
    Rumyantseva A; Kostcheev S; Adam PM; Gaponenko SV; Vaschenko SV; Kulakovich OS; Ramanenka AA; Guzatov DV; Korbutyak D; Dzhagan V; Stroyuk A; Shvalagin V
    ACS Nano; 2013 Apr; 7(4):3420-6. PubMed ID: 23464800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.