BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18210104)

  • 1. Environmental optimization for bioconversion of triolein into 7,10-dihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3.
    Chang IA; Bae JH; Suh MJ; Kim IH; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):581-6. PubMed ID: 18210104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3.
    Chang IA; Kim IH; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):301-6. PubMed ID: 17082930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.
    Bae JH; Suh MJ; Kim BS; Hou CT; Lee IJ; Kim IH; Kim HR
    N Biotechnol; 2010 Sep; 27(4):352-7. PubMed ID: 19951749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.
    Bae JH; Kim DS; Suh MJ; Oh SR; Lee IJ; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 May; 75(2):435-40. PubMed ID: 17262210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 7,10-dihydroxy-8(E)-octadecenoic acid from olive oil by Pseudomonas aeruginosa PR3.
    Suh MJ; Baek KY; Kim BS; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1721-7. PubMed ID: 21153811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3.
    Kuo TM; Kim H; Hou CT
    Curr Microbiol; 2001 Sep; 43(3):198-203. PubMed ID: 11400070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3.
    Back KY; Sohn HR; Hou CT; Kim HR
    J Agric Food Chem; 2011 Sep; 59(17):9652-7. PubMed ID: 21809883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of oleic acid, ricinoleic acid and linoleic acid conversions among Pseudomonas aeruginosa strains.
    Kuo TM; Nakamura LK
    Curr Microbiol; 2004 Oct; 49(4):261-6. PubMed ID: 15386114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa KNU-2B.
    Lee YJ; Moon JS; Kim IH; Kim HR
    Biotechnol Lett; 2020 Aug; 42(8):1547-1558. PubMed ID: 32246345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Glucosidase inhibitory activities of 10-hydroxy-8(E)-octadecenoic acid: an intermediate of bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid.
    Paul S; Hou CT; Kang SC
    N Biotechnol; 2010 Sep; 27(4):419-23. PubMed ID: 20385262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New bioactive fatty acids.
    Hou CT
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():192-5. PubMed ID: 18296335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial activity of a 7,10-dihydroxy-8(E)-octadecenoic acid against plant pathogenic bacteria.
    Sohn HR; Bae JH; Hou CT; Kim HR
    Enzyme Microb Technol; 2013 Aug; 53(3):152-3. PubMed ID: 23830454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing the production of a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid, by Pseudomonas aeruginosa PR3 (NRRL B-18602) in batch cultures.
    Kuo TM; Lanser AC
    Curr Microbiol; 2003 Sep; 47(3):186-91. PubMed ID: 14570267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa.
    Arshad M; Hussain S; Saleem M
    J Appl Microbiol; 2008 Feb; 104(2):364-70. PubMed ID: 17922824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 7,10-dihydroxy-8(E)-octadecenoic acid using cell-free supernatant of Pseudomonas aeruginosa.
    Tran TK; Singhvi M; Jeong JW; Dikshit PK; Kim HR; Hou CT; Kim BS
    Enzyme Microb Technol; 2021 Oct; 150():109892. PubMed ID: 34489045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into ( S )-( E )-10-hydroxy-8-octadecenoic acid.
    Busquets M; Deroncelé V; Vidal-Mas J; Rodríguez E; Guerrero A; Manresa A
    Antonie Van Leeuwenhoek; 2004 Feb; 85(2):129-39. PubMed ID: 15028873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of environmental factors on the production of oxygenated unsaturated fatty acids from linoleic acids by Bacillus megaterium ALA2.
    Hou CT
    Appl Microbiol Biotechnol; 2005 Dec; 69(4):463-8. PubMed ID: 15895222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoacylglycerol of 7,10-Dihydroxy-8(
    Chen KY; Kim IH; Hou CT; Watanabe Y; Kim HR
    J Agric Food Chem; 2019 Jul; 67(29):8191-8196. PubMed ID: 31282662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile reactor process for producing 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid conversion by Pseudomonas aeruginosa.
    Kuo TM; Ray KJ; Manthey LK
    Biotechnol Lett; 2003 Jan; 25(1):29-33. PubMed ID: 12882302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 10-hydroxy-8(E)-octadecenoic acid from oleic acid conversion by strains of Pseudomonas aeruginosa.
    Kuo TM; Huang JK; Labeda D; Wen L; Knothe G
    Curr Microbiol; 2008 Nov; 57(5):437-41. PubMed ID: 18704576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.