BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18210130)

  • 1. Hormonal regulation of phosphate homeostasis in goats during transition to rumination.
    Muscher A; Hattendorf J; Pfeffer E; Breves G; Huber K
    J Comp Physiol B; 2008 Jul; 178(5):585-96. PubMed ID: 18210130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo intestinal studies on calcium and phosphate transport in growing goats fed a reduced nitrogen diet.
    Muscher AS; Wilkens MR; Mrochen N; Schröder B; Breves G; Huber K
    Br J Nutr; 2012 Aug; 108(4):628-37. PubMed ID: 22172141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of renal calcium and phosphate transporting proteins by dietary nitrogen and/or calcium in young goats.
    Firmenich CS; Elfers K; Wilkens MR; Breves G; Muscher-Banse AS
    J Anim Sci; 2018 Jul; 96(8):3208-3220. PubMed ID: 29741700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific responses of N homeostasis and electrolyte handling to low N intake: a comparative physiological approach in a monogastric and a ruminant species.
    Starke S; Cox C; Südekum KH; Huber K
    J Comp Physiol B; 2014 Jan; 184(1):137-47. PubMed ID: 24129944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive responses of calcium and phosphate homeostasis in goats to low nitrogen intake: renal aspects.
    Starke S; Huber K
    J Anim Physiol Anim Nutr (Berl); 2014 Oct; 98(5):853-9. PubMed ID: 24283774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium.
    Huber K; Walter C; Schröder B; Breves G
    Am J Physiol Regul Integr Comp Physiol; 2002 Aug; 283(2):R296-302. PubMed ID: 12121840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake.
    Huber K; Hempel R; Rodehutscord M
    Poult Sci; 2006 Nov; 85(11):1980-6. PubMed ID: 17032833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP.
    Reining SC; Liesegang A; Betz H; Biber J; Murer H; Hernando N
    Pflugers Arch; 2010 Jun; 460(1):207-17. PubMed ID: 20354864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal mechanisms of calcium homeostasis in sheep and goats.
    Herm G; Muscher-Banse AS; Breves G; Schröder B; Wilkens MR
    J Anim Sci; 2015 Apr; 93(4):1608-21. PubMed ID: 26020183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calcium-sensing receptor has only a parathyroid hormone-dependent role in the acute response of renal phosphate transporters to phosphate intake.
    Daryadel A; Küng CJ; Haykir B; Sabrautzki S; de Angelis MH; Hernando N; Rubio-Aliaga I; Wagner CA
    Am J Physiol Renal Physiol; 2024 May; 326(5):F792-F801. PubMed ID: 38545651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE).
    Aniteli TM; de Siqueira FR; Dos Reis LM; Dominguez WV; de Oliveira EMC; Castelucci P; Moysés RMA; Jorgetti V
    Pflugers Arch; 2018 Apr; 470(4):623-632. PubMed ID: 29372301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and regulation of epithelial phosphate transport in ruminants: approaches in comparative physiology.
    Muscher-Banse AS; Breves G
    Pflugers Arch; 2019 Jan; 471(1):185-191. PubMed ID: 30009339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age, phosphorus, and 25-hydroxycholecalciferol regulate mRNA expression of vitamin D receptor and sodium-phosphate cotransporter in the small intestine of broiler chickens.
    Han JC; Zhang JL; Zhang N; Yang X; Qu HX; Guo Y; Shi CX; Yan YF
    Poult Sci; 2018 Apr; 97(4):1199-1208. PubMed ID: 29325125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice.
    Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration.
    Saddoris KL; Fleet JC; Radcliffe JS
    J Nutr; 2010 Apr; 140(4):731-6. PubMed ID: 20164365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dietary calcium and phosphorus supply on epithelial phosphate transport in preruminant goats.
    Huber K; Roesler U; Holthausen A; Pfeffer E; Breves G
    J Comp Physiol B; 2007 Feb; 177(2):193-203. PubMed ID: 17053890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary protein and calcium modulate parathyroid vitamin D receptor expression in young ruminants.
    Wilkens MR; Schnepel N; Muscher-Banse AS
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105503. PubMed ID: 31648052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium stimulates renal phosphate reabsorption.
    Thumfart J; Jung S; Amasheh S; Krämer S; Peters H; Sommer K; Biber J; Murer H; Meij I; Querfeld U; Wagner CA; Müller D
    Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1126-33. PubMed ID: 18701629
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.