BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18210130)

  • 21. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice.
    Segawa H; Kaneko I; Yamanaka S; Ito M; Kuwahata M; Inoue Y; Kato S; Miyamoto K
    Am J Physiol Renal Physiol; 2004 Jul; 287(1):F39-47. PubMed ID: 14996670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels.
    Bourgeois S; Capuano P; Stange G; Mühlemann R; Murer H; Biber J; Wagner CA
    Pflugers Arch; 2013 Nov; 465(11):1557-72. PubMed ID: 23708836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative studies on Na-dependent Pi transport in ovine, caprine and porcine renal cortex.
    Schröder B; Walter C; Breves G; Huber K
    J Comp Physiol B; 2000 Sep; 170(5-6):387-93. PubMed ID: 11083521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho.
    Dërmaku-Sopjani M; Sopjani M; Saxena A; Shojaiefard M; Bogatikov E; Alesutan I; Eichenmüller M; Lang F
    Cell Physiol Biochem; 2011; 28(2):251-8. PubMed ID: 21865732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis].
    Nabeshima Y
    Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers.
    Huber K; Zeller E; Rodehutscord M
    Poult Sci; 2015 May; 94(5):1009-17. PubMed ID: 25834252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of intestinal calcium and phosphate transport in young goats fed a nitrogen- and/or calcium-reduced diet.
    Elfers K; Wilkens MR; Breves G; Muscher-Banse AS
    Br J Nutr; 2015 Dec; 114(12):1949-64. PubMed ID: 26443238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate.
    Giral H; Caldas Y; Sutherland E; Wilson P; Breusegem S; Barry N; Blaine J; Jiang T; Wang XX; Levi M
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1466-75. PubMed ID: 19675183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.
    Lundquist P; Murer H; Biber J
    Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease.
    Motta SE; Imenez Silva PH; Daryadel A; Haykir B; Pastor-Arroyo EM; Bettoni C; Hernando N; Wagner CA
    Pflugers Arch; 2020 Apr; 472(4):449-460. PubMed ID: 32219532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of dietary phosphorus deficiency on surface pH and membrane composition of the mucosa epithelium in caprine jejunum.
    Busche R; Schröder B; Huber K; Sallmann HP; Breves G
    J Comp Physiol B; 2007 Jan; 177(1):135-42. PubMed ID: 17033826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The vitamin D analog ED-71 is a potent regulator of intestinal phosphate absorption and NaPi-IIb.
    Brown AJ; Zhang F; Ritter CS
    Endocrinology; 2012 Nov; 153(11):5150-6. PubMed ID: 22948213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proximal tubular handling of phosphate: A molecular perspective.
    Forster IC; Hernando N; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of intestinal phosphate transport in small ruminants.
    Schröder B; Käppner H; Failing K; Pfeffer E; Breves G
    Br J Nutr; 1995 Nov; 74(5):635-48. PubMed ID: 8541270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of hyperphosphatemia on gene expression of the Na-Pi cotransporter in rats.
    Zhang C; Shi LM; Li Y; Zhu QG; Jin CL; Wang HP; Zhou L; Hu XP; Zhang L; Wang H; Yuan GJ; Xu L; Zhao YK; Chou Y
    Genet Mol Res; 2016 Jan; 14(4):19404-10. PubMed ID: 26782594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of dietary Pi on the renal Na+-dependent Pi transporter NaPi-2 in thyroparathyroidectomized rats.
    Takahashi F; Morita K; Katai K; Segawa H; Fujioka A; Kouda T; Tatsumi S; Nii T; Taketani Y; Haga H; Hisano S; Fukui Y; Miyamoto KI; Takeda E
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):175-81. PubMed ID: 9639577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation.
    Hernando N; Myakala K; Simona F; Knöpfel T; Thomas L; Murer H; Wagner CA; Biber J
    J Bone Miner Res; 2015 Oct; 30(10):1925-37. PubMed ID: 25827490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.
    Schröder B; Schöneberger M; Rodehutscord M; Pfeffer E; Breves G
    J Comp Physiol B; 2003 Aug; 173(6):511-8. PubMed ID: 12811487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of apical Na+/Pi cotransporter type IIb expression in epithelial cells of goat mammary glands.
    Muscher A; Breves G; Huber K
    J Anim Physiol Anim Nutr (Berl); 2009 Aug; 93(4):477-85. PubMed ID: 18492032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.