BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18210130)

  • 41. Modulation of electrolyte homeostasis by dietary nitrogen intake in growing goats.
    Muscher AS; Piechotta M; Breves G; Huber K
    Br J Nutr; 2011 Jun; 105(11):1619-26. PubMed ID: 21443813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute adaptation of renal phosphate transporters in the murine kidney to oral phosphate intake requires multiple signals.
    Daryadel A; Haykir B; Küng CJ; Bugarski M; Bettoni C; Schnitzbauer U; Hernando N; Hall AM; Wagner CA
    Acta Physiol (Oxf); 2022 Jun; 235(2):e13815. PubMed ID: 35334154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relative effects of PTH and dietary phosphorus on calcitriol production in normal and azotemic rats.
    Tallon S; Berdud I; Hernandez A; Concepcion MT; Almaden Y; Torres A; Martin-Malo A; Felsenfeld AJ; Aljama P; Rodriguez M
    Kidney Int; 1996 May; 49(5):1441-6. PubMed ID: 8731112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decreased mRNA expression of the PTH/PTHrP receptor and type II sodium-dependent phosphate transporter in the kidney of rats fed a high phosphorus diet accompanied with a decrease in serum calcium concentration.
    Katsumata S; Masuyama R; Uehara M; Suzuki K
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2484-9. PubMed ID: 15618618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ontogenesis of epithelial phosphate transport systems in goats.
    Huber K; Roesler U; Muscher A; Hansen K; Widiyono I; Pfeffer E; Breves G
    Am J Physiol Regul Integr Comp Physiol; 2003 Feb; 284(2):R413-21. PubMed ID: 12388429
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.
    Kaneko I; Segawa H; Furutani J; Kuwahara S; Aranami F; Hanabusa E; Tominaga R; Giral H; Caldas Y; Levi M; Kato S; Miyamoto K
    Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Restriction of dietary non-phytate phosphorus on growth performance and expression of intestinal phosphate cotransporter genes in broilers.
    Tay-Zar AC; Srichana P; Sadiq MB; Anal AK
    Poult Sci; 2019 Oct; 98(10):4685-4693. PubMed ID: 30982064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules.
    Ide N; Ye R; Courbebaisse M; Olauson H; Densmore MJ; Larsson TE; Hanai JI; Lanske B
    Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1261-F1270. PubMed ID: 29993278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice.
    Capuano P; Bacic D; Roos M; Gisler SM; Stange G; Biber J; Kaissling B; Weinman EJ; Shenolikar S; Wagner CA; Murer H
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C927-34. PubMed ID: 16987995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptation to changes in dietary phosphorus intake in health and in renal failure.
    Loghman-Adham M
    J Lab Clin Med; 1997 Feb; 129(2):176-88. PubMed ID: 9016853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 1α-Hydroxycholecalciferol improves the growth performance and up-regulates the mRNA expression of vitamin D receptor in the small intestine and kidney of broiler chickens.
    Han JC; Wang JG; Chen GH; Zhang JL; Zhang N; Qu HX; Guo Y; Yan YF; Yang XJ
    Poult Sci; 2018 Apr; 97(4):1263-1270. PubMed ID: 29452375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-fat diets provoke phosphorus absorption from the small intestine in rats.
    Kawamoto K; Sakuma M; Tanaka S; Masuda M; Nakao-Muraoka M; Niida Y; Nakamatsu Y; Ito M; Taketani Y; Arai H
    Nutrition; 2020 Apr; 72():110694. PubMed ID: 32007805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Akt2/PKBbeta-sensitive regulation of renal phosphate transport.
    Kempe DS; Ackermann TF; Boini KM; Klaus F; Umbach AT; Dërmaku-Sopjani M; Judenhofer MS; Pichler BJ; Capuano P; Stange G; Wagner CA; Birnbaum MJ; Pearce D; Föller M; Lang F
    Acta Physiol (Oxf); 2010 Sep; 200(1):75-85. PubMed ID: 20236253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter.
    Tenenhouse HS
    Annu Rev Nutr; 2005; 25():197-214. PubMed ID: 16011465
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of parathyroid gland hyperplasia without uremia: role of dietary calcium and phosphate.
    Canalejo A; Canalejo R; Rodriguez ME; Martinez-Moreno JM; Felsenfeld AJ; Rodríguez M; Almaden Y
    Nephrol Dial Transplant; 2010 Apr; 25(4):1087-97. PubMed ID: 19934096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the chicken small intestine type IIb sodium phosphate cotransporter.
    Yan F; Angel R; Ashwell CM
    Poult Sci; 2007 Jan; 86(1):67-76. PubMed ID: 17179418
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dietary supplemental vitamin D3 enhances phosphorus absorption and utilisation by regulating gene expression of related phosphate transporters in the small intestine of broilers.
    Shao Y; Wen Q; Zhang S; Lu L; Zhang L; Liao X; Luo X
    Br J Nutr; 2019 Jan; 121(1):9-21. PubMed ID: 30370888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet.
    Segawa H; Yamanaka S; Ito M; Kuwahata M; Shono M; Yamamoto T; Miyamoto K
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F587-96. PubMed ID: 15561978
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter.
    Segawa H; Kawakami E; Kaneko I; Kuwahata M; Ito M; Kusano K; Saito H; Fukushima N; Miyamoto K
    Pflugers Arch; 2003 Aug; 446(5):585-92. PubMed ID: 12851820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.