BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 18210372)

  • 21. Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms.
    Kültz D; Fiol D; Valkova N; Gomez-Jimenez S; Chan SY; Lee J
    J Exp Biol; 2007 May; 210(Pt 9):1593-601. PubMed ID: 17449824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology.
    Lacerda CM; Reardon KF
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):75-87. PubMed ID: 19279070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites.
    Desai C; Pathak H; Madamwar D
    Bioresour Technol; 2010 Mar; 101(6):1558-69. PubMed ID: 19962886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting bioremediation of hydrocarbons: laboratory to field scale.
    Diplock EE; Mardlin DP; Killham KS; Paton GI
    Environ Pollut; 2009 Jun; 157(6):1831-40. PubMed ID: 19232804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1.
    Rabus R
    Appl Microbiol Biotechnol; 2005 Sep; 68(5):580-7. PubMed ID: 16041578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique.
    Salinas-Martínez A; de los Santos-Córdova M; Soto-Cruz O; Delgado E; Pérez-Andrade H; Háuad-Marroquín LA; Medrano-Roldán H
    J Environ Manage; 2008 Jul; 88(1):115-9. PubMed ID: 17418480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation.
    Franzetti A; Di Gennaro P; Bestetti G; Lasagni M; Pitea D; Collina E
    J Hazard Mater; 2008 Apr; 152(3):1309-16. PubMed ID: 17850960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes.
    Tyagi M; da Fonseca MM; de Carvalho CC
    Biodegradation; 2011 Apr; 22(2):231-41. PubMed ID: 20680666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria.
    Gerischer U
    J Mol Microbiol Biotechnol; 2002 Mar; 4(2):111-21. PubMed ID: 11873906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cleaning up with genomics: applying molecular biology to bioremediation.
    Lovley DR
    Nat Rev Microbiol; 2003 Oct; 1(1):35-44. PubMed ID: 15040178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ralstonia pickettii in environmental biotechnology: potential and applications.
    Ryan MP; Pembroke JT; Adley CC
    J Appl Microbiol; 2007 Oct; 103(4):754-64. PubMed ID: 17897177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of environmental stress response on the proteome level.
    Nesatyy VJ; Suter MJ
    Mass Spectrom Rev; 2008; 27(6):556-74. PubMed ID: 18553564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of aromatic and asphaltenic fractions by Serratia liquefasciensand bacillus sp.
    Rojas-Avelizapa NG; Cervantes-Gonzalez E; Cruz-Camarillo R; Rojas-Avelizapa LI
    Bull Environ Contam Toxicol; 2002 Dec; 69(6):835-42. PubMed ID: 12428160
    [No Abstract]   [Full Text] [Related]  

  • 34. Increasing phytoremediation efficiency and reliability using novel omics approaches.
    Bell TH; Joly S; Pitre FE; Yergeau E
    Trends Biotechnol; 2014 May; 32(5):271-80. PubMed ID: 24735678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Archaeal transformation of metals in the environment.
    Bini E
    FEMS Microbiol Ecol; 2010 Jul; 73(1):1-16. PubMed ID: 20455933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic biodegradation in microorganisms: a review].
    Khomenkov VG; Shevelev AB; Zhukov VG; Zagustina NA; Bezborodov AM; Popov VO
    Prikl Biokhim Mikrobiol; 2008; 44(2):133-52. PubMed ID: 18669255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation potential of the genus Rhodococcus.
    Martínková L; Uhnáková B; Pátek M; Nesvera J; Kren V
    Environ Int; 2009 Jan; 35(1):162-77. PubMed ID: 18789530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using the stress response to monitor process control: pathways to more effective bioremediation.
    Hazen TC; Stahl DA
    Curr Opin Biotechnol; 2006 Jun; 17(3):285-90. PubMed ID: 16616486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Issues concerned with the bioremediation of contaminated soils].
    Song YF; Song XY; Zhang W; Zhou QX; Sun TH
    Huan Jing Ke Xue; 2004 Mar; 25(2):129-33. PubMed ID: 15202250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics.
    Steinberg CE; Stürzenbaum SR; Menzel R
    Sci Total Environ; 2008 Aug; 400(1-3):142-61. PubMed ID: 18817948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.