BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18211007)

  • 1. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition.
    Chadli A; Bruinsma ES; Stensgard B; Toft D
    Biochemistry; 2008 Mar; 47(9):2850-7. PubMed ID: 18211007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.
    Assimon VA; Southworth DR; Gestwicki JE
    Biochemistry; 2015 Dec; 54(48):7120-31. PubMed ID: 26565746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors.
    Schülke JP; Wochnik GM; Lang-Rollin I; Gassen NC; Knapp RT; Berning B; Yassouridis A; Rein T
    PLoS One; 2010 Jul; 5(7):e11717. PubMed ID: 20661446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functions of the Hsp90-Binding FKBP Immunophilins.
    Ortiz NR; Guy N; Garcia YA; Sivils JC; Galigniana MD; Cox MB
    Subcell Biochem; 2023; 101():41-80. PubMed ID: 36520303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes.
    Morgan RM; Pal M; Roe SM; Pearl LH; Prodromou C
    Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1197-206. PubMed ID: 25945584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based discovery of small molecule inhibitors of FKBP51-Hsp90 protein-protein interaction.
    Wang L; Kumar R; Winblad B; Pavlov PF
    Eur J Med Chem; 2024 Apr; 270():116356. PubMed ID: 38579621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes.
    Sinars CR; Cheung-Flynn J; Rimerman RA; Scammell JG; Smith DF; Clardy J
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):868-73. PubMed ID: 12538866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions.
    Dean ME; Johnson JL
    Cell Stress Chaperones; 2021 Jan; 26(1):3-13. PubMed ID: 33037995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the cellular molecular chaperone network through the ubiquitous cochaperones.
    Echtenkamp FJ; Freeman BC
    Biochim Biophys Acta; 2012 Mar; 1823(3):668-73. PubMed ID: 21889547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches.
    Darby JF; Vidler LR; Simpson PJ; Al-Lazikani B; Matthews SJ; Sharp SY; Pearl LH; Hoelder S; Workman P
    Sci Rep; 2020 Sep; 10(1):16000. PubMed ID: 32994435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand recognition by the TPR domain of the import factor Toc64 from Arabidopsis thaliana.
    Panigrahi R; Adina-Zada A; Whelan J; Vrielink A
    PLoS One; 2013; 8(12):e83461. PubMed ID: 24391770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the TPR-domain immunophilins FKBP51 and FKBP52 in normal physiology and disease.
    Soto OB; Ramirez CS; Koyani R; Rodriguez-Palomares IA; Dirmeyer JR; Grajeda B; Roy S; Cox MB
    J Cell Biochem; 2023 Apr; ():. PubMed ID: 37087733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence analyses reveal that a TPR-DP module, surrounded by recombinable flanking introns, could be at the origin of eukaryotic Hop and Hip TPR-DP domains and prokaryotic GerD proteins.
    Hernández Torres J; Papandreou N; Chomilier J
    Cell Stress Chaperones; 2009 May; 14(3):281-9. PubMed ID: 18987995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.
    Blackburn EA; Wear MA; Landré V; Narayan V; Ning J; Erman B; Ball KL; Walkinshaw MD
    Biosci Rep; 2015 Sep; 35(5):. PubMed ID: 26330616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1.
    Srivastava D; Yadav RP; Singh S; Boyd K; Artemyev NO
    Structure; 2023 Mar; 31(3):309-317.e5. PubMed ID: 36657440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile TPR domains accommodate different modes of target protein recognition and function.
    Allan RK; Ratajczak T
    Cell Stress Chaperones; 2011 Jul; 16(4):353-67. PubMed ID: 21153002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis.
    Brown MA; Foreman K; Harriss J; Das C; Zhu L; Edwards M; Shaaban S; Tucker H
    Oncotarget; 2015 Feb; 6(6):4005-19. PubMed ID: 25738358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.
    Yang J; Roe SM; Cliff MJ; Williams MA; Ladbury JE; Cohen PT; Barford D
    EMBO J; 2005 Jan; 24(1):1-10. PubMed ID: 15577939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An AlphaScreen-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction.
    Yi F; Zhu P; Southall N; Inglese J; Austin CP; Zheng W; Regan L
    J Biomol Screen; 2009 Mar; 14(3):273-81. PubMed ID: 19211782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts.
    Pratt WB; Morishima Y; Osawa Y
    J Biol Chem; 2008 Aug; 283(34):22885-9. PubMed ID: 18515355
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.