BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 18211007)

  • 21. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique proline-rich domain regulates the chaperone function of AIPL1.
    Li J; Zoldak G; Kriehuber T; Soroka J; Schmid FX; Richter K; Buchner J
    Biochemistry; 2013 Mar; 52(12):2089-96. PubMed ID: 23418749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically.
    Abbas-Terki T; Briand PA; Donzé O; Picard D
    Biol Chem; 2002 Sep; 383(9):1335-42. PubMed ID: 12437126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designed TPR modules as novel anticancer agents.
    Cortajarena AL; Yi F; Regan L
    ACS Chem Biol; 2008 Mar; 3(3):161-6. PubMed ID: 18355005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement.
    Pratt WB; Galigniana MD; Harrell JM; DeFranco DB
    Cell Signal; 2004 Aug; 16(8):857-72. PubMed ID: 15157665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors.
    Ratajczak T; Ward BK; Cluning C; Allan RK
    Int J Biochem Cell Biol; 2009; 41(8-9):1652-5. PubMed ID: 19433306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding.
    Shao J; Irwin A; Hartson SD; Matts RL
    Biochemistry; 2003 Nov; 42(43):12577-88. PubMed ID: 14580204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.
    Yun BG; Huang W; Leach N; Hartson SD; Matts RL
    Biochemistry; 2004 Jun; 43(25):8217-29. PubMed ID: 15209518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients.
    Scroggins BT; Prince T; Shao J; Uma S; Huang W; Guo Y; Yun BG; Hedman K; Matts RL; Hartson SD
    Biochemistry; 2003 Nov; 42(43):12550-61. PubMed ID: 14580201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional specificity of co-chaperone interactions with Hsp90 client proteins.
    Riggs DL; Cox MB; Cheung-Flynn J; Prapapanich V; Carrigan PE; Smith DF
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):279-95. PubMed ID: 15763706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A client-binding site of Cdc37.
    Terasawa K; Minami Y
    FEBS J; 2005 Sep; 272(18):4684-90. PubMed ID: 16156789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The FKBP-type domain of the human aryl hydrocarbon receptor-interacting protein reveals an unusual Hsp90 interaction.
    Linnert M; Lin YJ; Manns A; Haupt K; Paschke AK; Fischer G; Weiwad M; Lücke C
    Biochemistry; 2013 Mar; 52(12):2097-107. PubMed ID: 23418784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors.
    Schülke JP; Wochnik GM; Lang-Rollin I; Gassen NC; Knapp RT; Berning B; Yassouridis A; Rein T
    PLoS One; 2010 Jul; 5(7):e11717. PubMed ID: 20661446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.
    Richter K; Walter S; Buchner J
    J Mol Biol; 2004 Oct; 342(5):1403-13. PubMed ID: 15364569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functions of the Hsp90-Binding FKBP Immunophilins.
    Ortiz NR; Guy N; Garcia YA; Sivils JC; Galigniana MD; Cox MB
    Subcell Biochem; 2023; 101():41-80. PubMed ID: 36520303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors.
    Paul A; Garcia YA; Zierer B; Patwardhan C; Gutierrez O; Hildenbrand Z; Harris DC; Balsiger HA; Sivils JC; Johnson JL; Buchner J; Chadli A; Cox MB
    J Biol Chem; 2014 May; 289(22):15297-308. PubMed ID: 24753260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses.
    Travers SA; Fares MA
    Mol Biol Evol; 2007 Apr; 24(4):1032-44. PubMed ID: 17267421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90.
    Ramsey AJ; Russell LC; Whitt SR; Chinkers M
    J Biol Chem; 2000 Jun; 275(23):17857-62. PubMed ID: 10751404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hsp90: a chaperone for protein folding and gene regulation.
    Zhao R; Houry WA
    Biochem Cell Biol; 2005 Dec; 83(6):703-10. PubMed ID: 16333321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.