These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18211267)

  • 1. Environmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads.
    de Koning AP; Noble GP; Heiss AA; Wong J; Keeling PJ
    Environ Microbiol; 2008 Jan; 10(1):65-74. PubMed ID: 18211267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix.
    Keeling PJ; Leander BS
    J Mol Biol; 2003 Mar; 326(5):1337-49. PubMed ID: 12595248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA.
    Heiss AA; Keeling PJ
    Protist; 2006 Aug; 157(3):335-44. PubMed ID: 16839812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework.
    Gile GH; Novis PM; Cragg DS; Zuccarello GC; Keeling PJ
    J Eukaryot Microbiol; 2009; 56(4):367-72. PubMed ID: 19602082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus.
    Carpenter KJ; Chow L; Keeling PJ
    J Eukaryot Microbiol; 2009; 56(4):305-13. PubMed ID: 19602076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface morphology of Saccinobaculus (Oxymonadida): implications for character evolution and function in oxymonads.
    Carpenter KJ; Waller RF; Keeling PJ
    Protist; 2008 Apr; 159(2):209-21. PubMed ID: 18024180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread and ancient distribution of a noncanonical genetic code in diplomonads.
    Keeling PJ; Doolittle WF
    Mol Biol Evol; 1997 Sep; 14(9):895-901. PubMed ID: 9287422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions.
    Kim OT; Yura K; Go N; Harumoto T
    Gene; 2005 Feb; 346():277-86. PubMed ID: 15716103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-canonical genetic code in an early diverging eukaryotic lineage.
    Keeling PJ; Doolittle WF
    EMBO J; 1996 May; 15(9):2285-90. PubMed ID: 8641293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [How translation termination factor eRF1 Euplotes does not recognise UGA stop codon].
    Lekomtsev SA; Kolosov PM; Frolova LIu; Bidou L; Rousset JP; Kiselev LL
    Mol Biol (Mosk); 2007; 41(6):1014-22. PubMed ID: 18318120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extended RNA code and its relationship to the standard genetic code: an algebraic and geometrical approach.
    José MV; Morgado ER; Govezensky T
    Bull Math Biol; 2007 Jan; 69(1):215-43. PubMed ID: 17080285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ciliates use both variant and universal genetic codes: evidence of omnipotent eRF1s in the class Litostomatea.
    Kim OT; Sakurai A; Saito K; Ito K; Ikehara K; Harumoto T
    Gene; 2008 Jul; 417(1-2):51-8. PubMed ID: 18495382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial genome evolution in the social amoebae.
    Heidel AJ; Glöckner G
    Mol Biol Evol; 2008 Jul; 25(7):1440-50. PubMed ID: 18413355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a wide occurrence of proton-translocating pyrophosphatase genes in parasitic and free-living protozoa.
    Pérez-Castiñeira JR; Alvar J; Ruiz-Pérez LM; Serrano A
    Biochem Biophys Res Commun; 2002 Jun; 294(3):567-73. PubMed ID: 12056804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes.
    Stingl U; Brune A
    Protist; 2003 Apr; 154(1):147-55. PubMed ID: 12812374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional implications of an unusual foraminiferal beta-tubulin.
    Habura A; Wegener L; Travis JL; Bowser SS
    Mol Biol Evol; 2005 Oct; 22(10):2000-9. PubMed ID: 15944439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata.
    Hampl V; Horner DS; Dyal P; Kulda J; Flegr J; Foster PG; Embley TM
    Mol Biol Evol; 2005 Dec; 22(12):2508-18. PubMed ID: 16120804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of polymerase chain reaction (PCR) amplification studies of unicellular protists using single-cell PCR.
    Lynn DH; Pinheiro M
    J Eukaryot Microbiol; 2009; 56(5):406-12. PubMed ID: 19737192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic and primary sequence characterization of cathepsin B cysteine proteases from the oxymonad flagellate Monocercomonoides.
    Dacks JB; Kuru T; Liapounova NA; Gedamu L
    J Eukaryot Microbiol; 2008; 55(1):9-17. PubMed ID: 18251797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of the microtubule system in the early stage of eukaryote evolution: elongation factor 1 alpha and alpha-tubulin protein phylogeny of termite symbiotic oxymonad and hypermastigote protists.
    Moriya S; Tanaka K; Ohkuma M; Sugano S; Kudo T
    J Mol Evol; 2001 Jan; 52(1):6-16. PubMed ID: 11139290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.