BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1821168)

  • 1. Synthesis and hydrolysis by arginyl-hydrolases of p-nitroanilide chromogenic substrates containing polyethylene glycol and D-gluconyl moieties.
    Juliano MA; Juliano L; Biondi L; Rocchi R
    Pept Res; 1991; 4(6):334-9. PubMed ID: 1821168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain].
    Azarian AV; Agatian GL; Galoian AA
    Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide.
    Juliano MA; Juliano L
    Braz J Med Biol Res; 1985; 18(4):435-45. PubMed ID: 3915433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new substrate and two inhibitors applicable for thermitase, subtilisin BPN' and alpha-chymotrypsin. Comparison of kinetic parameters with customary substrates and inhibitors.
    Brömme D; Fittkau S
    Biomed Biochim Acta; 1985; 44(7-8):1089-94. PubMed ID: 3910035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromogenic and fluorogenic glycosylated and acetylglycosylated peptides as substrates for serine, thiol and aspartyl proteases.
    Juliano MA; Filira F; Gobbo M; Rocchi R; Del Nery E; Juliano L
    J Pept Res; 1999 Feb; 53(2):109-19. PubMed ID: 10195448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of pancreatic elastase with tripeptidyl-p-nitroanilide substrates.
    Szabó GC; Pozsgay M; Gáspár R; Elödi P
    Acta Biochim Biophys Acad Sci Hung; 1980; 15(4):263-763. PubMed ID: 6945027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of thrombin on peptide p-nitroanilide substrates: hydrolysis of Tos-Gly-Pro-Arg-pNA and D-Phe-Pip-Arg-pNA by human alpha and gamma and bovine alpha and beta-thrombins.
    Lottenberg R; Hall JA; Fenton JW; Jackson CM
    Thromb Res; 1982 Nov; 28(3):313-32. PubMed ID: 7179220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serine protease specificity for peptide chromogenic substrates.
    Mattler LE; Bang NU
    Thromb Haemost; 1977 Dec; 38(4):776-92. PubMed ID: 146272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of the effect of heparin on the amidase activity of trypsin, plasmin and urokinase.
    Yomtova VM; Stambolieva NA; Blagoev BM
    Thromb Haemost; 1983 Jun; 49(3):199-203. PubMed ID: 6224310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromogenic substrates of bovine beta-trypsin: the influence of an amino acid residue in P1 position on their interaction with the enzyme.
    Lesner A; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2001 Aug; 285(5):1350-3. PubMed ID: 11478806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Use of chromogenic substrates for estimation of indicators of kallikrein-kinin and blood coagulation systems in blood plasma of patients with nephrotic syndrome].
    Baskova IP; Paskhina TS; Poliantseva LR; Iakubovskaia RI; Tiero A
    Vopr Med Khim; 1983; 29(5):96-9. PubMed ID: 6557709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on proteases and alpha-macroglobulin activity in amphibian blood plasma.
    Kumar RS
    Indian J Exp Biol; 1997 Nov; 35(11):1198-202. PubMed ID: 9567750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic studies on thrombin catalysis.
    Stone SR; Betz A; Hofsteenge J
    Biochemistry; 1991 Oct; 30(41):9841-8. PubMed ID: 1911776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for selection of trypsin chromogenic substrates using combinatorial chemistry approach.
    Zabłotna E; Dysasz H; Lesner A; Jaśkiewicz A; Kaźmierczak K; Miecznikowska H; Rolka K
    Biochem Biophys Res Commun; 2004 Jun; 319(1):185-8. PubMed ID: 15158459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, chemical synthesis and kinetic studies of trypsin chromogenic substrates based on the proteinase binding loop of Cucurbita maxima trypsin inhibitor (CMTI-III).
    Lesner A; Brzozowski K; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2000 Mar; 269(1):81-4. PubMed ID: 10694481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-Michaelian action of thrombin on peptide p-nitroanilide substrates.
    Izquierdo C; Burguillo FJ; Bardsley WG
    Biochem J; 1987 Apr; 243(2):329-34. PubMed ID: 3477225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic comparison of the homologous proteases astacin and meprin A.
    Wolz RL
    Arch Biochem Biophys; 1994 Apr; 310(1):144-51. PubMed ID: 8161197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [New donor-acceptor pairs for fluorogenic substrates with intramolecular fluorescence energy transfer for thrombin and trypsin].
    Kholodovich VV; Kara DI; Gershkovich AA; Kibirev VK; Karabut LV; Klimenko IV; Korneliuk AI
    Bioorg Khim; 1998 Mar; 24(3):179-85. PubMed ID: 9612559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic peculiarities of human tissue kallikrein: 1--substrate activation in the catalyzed hydrolysis of H-D-valyl-L-leucyl-L-arginine 4-nitroanilide and H-D-valyl-L-leucyl-L-lysine 4-nitroanilide; 2--substrate inhibition in the catalyzed hydrolysis of N alpha-p-tosyl-L-arginine methyl ester.
    Sousa MO; Miranda TL; Maia CN; Bittar ER; Santoro MM; Figueiredo AF
    Arch Biochem Biophys; 2002 Apr; 400(1):7-14. PubMed ID: 11913965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.