These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 18211817)
1. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases. Chen YT; Hsu CL; Hou SY Anal Biochem; 2008 Apr; 375(2):299-305. PubMed ID: 18211817 [TBL] [Abstract][Full Text] [Related]
2. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979 [TBL] [Abstract][Full Text] [Related]
3. A sensitive fluorescence anisotropy method for point mutation detection by using core-shell fluorescent nanoparticles and high-fidelity DNA ligase. Deng T; Li J; Jiang JH; Shen GL; Yu RQ Chemistry; 2007; 13(27):7725-30. PubMed ID: 17607685 [TBL] [Abstract][Full Text] [Related]
4. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms. Wang H; Li J; Wang Y; Jin J; Yang R; Wang K; Tan W Anal Chem; 2010 Sep; 82(18):7684-90. PubMed ID: 20726510 [TBL] [Abstract][Full Text] [Related]
5. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. He Y; Zeng K; Gurung AS; Baloda M; Xu H; Zhang X; Liu G Anal Chem; 2010 Sep; 82(17):7169-77. PubMed ID: 20681563 [TBL] [Abstract][Full Text] [Related]
6. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction. Wang X; Zou M; Huang H; Ren Y; Li L; Yang X; Li N Biosens Bioelectron; 2013 Mar; 41():569-75. PubMed ID: 23062556 [TBL] [Abstract][Full Text] [Related]
7. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245 [TBL] [Abstract][Full Text] [Related]
8. Dimeric gold nanoparticle assembly for detection and discrimination of single nucleotide mutation in Duchenne muscular dystrophy. Qin WJ; Yim OS; Lai PS; Yung LY Biosens Bioelectron; 2010 May; 25(9):2021-5. PubMed ID: 20219341 [TBL] [Abstract][Full Text] [Related]
9. A novel automated assay with dual-color hybridization for single-nucleotide polymorphisms genotyping on gold magnetic nanoparticle array. Li S; Liu H; Liu L; Tian L; He N Anal Biochem; 2010 Oct; 405(1):141-3. PubMed ID: 20507822 [TBL] [Abstract][Full Text] [Related]
10. Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Oh JH; Lee JS Anal Chem; 2011 Oct; 83(19):7364-70. PubMed ID: 21882850 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Kerman K; Saito M; Morita Y; Takamura Y; Ozsoz M; Tamiya E Anal Chem; 2004 Apr; 76(7):1877-84. PubMed ID: 15053647 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles. Lee H; Joo SW; Lee SY; Lee CH; Yoon KA; Lee K Biosens Bioelectron; 2010 Oct; 26(2):730-5. PubMed ID: 20674325 [TBL] [Abstract][Full Text] [Related]
13. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Liu J; Lu Y Nat Protoc; 2006; 1(1):246-52. PubMed ID: 17406240 [TBL] [Abstract][Full Text] [Related]
14. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Liu CH; Li ZP; Du BA; Duan XR; Wang YC Anal Chem; 2006 Jun; 78(11):3738-44. PubMed ID: 16737231 [TBL] [Abstract][Full Text] [Related]
15. Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method. Cho M; Han MS; Ban C Chem Commun (Camb); 2008 Oct; (38):4573-5. PubMed ID: 18815687 [TBL] [Abstract][Full Text] [Related]
16. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles. Liu M; Yuan M; Lou X; Mao H; Zheng D; Zou R; Zou N; Tang X; Zhao J Biosens Bioelectron; 2011 Jul; 26(11):4294-300. PubMed ID: 21605966 [TBL] [Abstract][Full Text] [Related]
17. Hydroxylamine-amplified gold nanoparticles for the naked eye and chemiluminescent detection of sequence-specific DNA with notable potential for single-nucleotide polymorphism discrimination. Fan A; Lau C; Lu J Analyst; 2009 Mar; 134(3):497-503. PubMed ID: 19238286 [TBL] [Abstract][Full Text] [Related]
18. Melting temperature of surface-tethered DNA. Nasef H; Ozalp VC; Beni V; O'Sullivan CK Anal Biochem; 2010 Nov; 406(1):34-40. PubMed ID: 20615383 [TBL] [Abstract][Full Text] [Related]
19. Detection of proteins using a colorimetric bio-barcode assay. Nam JM; Jang KJ; Groves JT Nat Protoc; 2007; 2(6):1438-44. PubMed ID: 17545980 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical biosensors for detection of point mutation based on surface ligation reaction and oligonucleotides modified gold nanoparticles. Wang Q; Yang L; Yang X; Wang K; He L; Zhu J Anal Chim Acta; 2011 Mar; 688(2):163-7. PubMed ID: 21334481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]