BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18211831)

  • 1. Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins.
    Wang X; Kettenhofen NJ; Shiva S; Hogg N; Gladwin MT
    Free Radic Biol Med; 2008 Apr; 44(7):1362-72. PubMed ID: 18211831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinapinic acid can replace ascorbate in the biotin switch assay.
    Kallakunta VM; Staruch A; Mutus B
    Biochim Biophys Acta; 2010 Jan; 1800(1):23-30. PubMed ID: 19837133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of S-Nitrosated Nuclear Proteins in Pathogen-Treated Arabidopsis Cell Cultures Using Biotin Switch Technique.
    Shekariesfahlan A; Lindermayr C
    Methods Mol Biol; 2018; 1747():205-221. PubMed ID: 29600461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.
    Wiesweg M; Berchner-Pfannschmidt U; Fandrey J; Petrat F; de Groot H; Kirsch M
    Free Radic Res; 2013 Feb; 47(2):104-15. PubMed ID: 23181469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins.
    Zhang Y; Keszler A; Broniowska KA; Hogg N
    Free Radic Biol Med; 2005 Apr; 38(7):874-81. PubMed ID: 15749383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of S-nitrosothiol formation by NO*/O2 and by NO*/methemoglobin.
    Herold S; Röck G
    Arch Biochem Biophys; 2005 Apr; 436(2):386-96. PubMed ID: 15797251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of nitric oxide release from S-nitrosothiols.
    Singh RJ; Hogg N; Joseph J; Kalyanaraman B
    J Biol Chem; 1996 Aug; 271(31):18596-603. PubMed ID: 8702510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-gel detection of S-nitrosated proteins using fluorescence methods.
    Kettenhofen NJ; Wang X; Gladwin MT; Hogg N
    Methods Enzymol; 2008; 441():53-71. PubMed ID: 18554529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors.
    Sinha V; Wijewickrama GT; Chandrasena RE; Xu H; Edirisinghe PD; Schiefer IT; Thatcher GR
    ACS Chem Biol; 2010 Jul; 5(7):667-80. PubMed ID: 20524644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.
    Dahm CC; Moore K; Murphy MP
    J Biol Chem; 2006 Apr; 281(15):10056-65. PubMed ID: 16481325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of Fas S-Nitrosylation by the Biotin Switch Assay.
    Bettaieb A; Paul C; Plenchette S
    Methods Mol Biol; 2017; 1557():199-206. PubMed ID: 28078594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protein S-nitrosylation with the biotin-switch technique.
    Forrester MT; Foster MW; Benhar M; Stamler JS
    Free Radic Biol Med; 2009 Jan; 46(2):119-26. PubMed ID: 18977293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective fluorescent labeling of S-nitrosothiols (S-FLOS): a novel method for studying S-nitrosation.
    Santhanam L; Gucek M; Brown TR; Mansharamani M; Ryoo S; Lemmon CA; Romer L; Shoukas AA; Berkowitz DE; Cole RN
    Nitric Oxide; 2008 Nov; 19(3):295-302. PubMed ID: 18706513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of protein nitrosothiols using phosphine-mediated selective reduction.
    Li S; Wang H; Xian M; Whorton AR
    Nitric Oxide; 2012 Jan; 26(1):20-6. PubMed ID: 22100619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrosonium-catalyzed decomposition of s-nitrosothiols in solution: a theoretical and experimental study.
    Zhao YL; McCarren PR; Houk KN; Choi BY; Toone EJ
    J Am Chem Soc; 2005 Aug; 127(31):10917-24. PubMed ID: 16076198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is ascorbate able to reduce disulfide bridges? A cautionary note.
    Giustarini D; Dalle-Donne I; Colombo R; Milzani A; Rossi R
    Nitric Oxide; 2008 Nov; 19(3):252-8. PubMed ID: 18675931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress.
    Forrester MT; Foster MW; Stamler JS
    J Biol Chem; 2007 May; 282(19):13977-83. PubMed ID: 17376775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
    Wolhuter K; Whitwell HJ; Switzer CH; Burgoyne JR; Timms JF; Eaton P
    Mol Cell; 2018 Feb; 69(3):438-450.e5. PubMed ID: 29358077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of S-nitrosothiol formation and degradation mediated by copper ions.
    Stubauer G; Giuffrè A; Sarti P
    J Biol Chem; 1999 Oct; 274(40):28128-33. PubMed ID: 10497164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A copper(II) thiolate from reductive cleavage of an S-nitrosothiol.
    Melzer MM; Mossin S; Cardenas AJ; Williams KD; Zhang S; Meyer K; Warren TH
    Inorg Chem; 2012 Aug; 51(16):8658-60. PubMed ID: 22867516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.