These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1821185)

  • 1. The role of intrinsic neuronal properties in the encoding of auditory information in the cochlear nuclei.
    Oertel D
    Curr Opin Neurobiol; 1991 Aug; 1(2):221-8. PubMed ID: 1821185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of synapses and electrical properties of cells in the cochlear nuclei.
    Wu SH; Oertel D
    Hear Res; 1987; 30(1):99-110. PubMed ID: 3680058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus.
    Brown DH; Hyson RL
    J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new window on sound.
    Olshausen BA; O'Connor KN
    Nat Neurosci; 2002 Apr; 5(4):292-4. PubMed ID: 11914717
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Model of a binaural hearing system. II. Monaural processing of information concerning short sounds].
    Liubinskiĭ IA; Pozin NV; Shmelev LA
    Biofizika; 1977; 22(2):345-50. PubMed ID: 861276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations.
    Perry DR; Webster WR
    J Comp Neurol; 1981 Apr; 197(4):623-38. PubMed ID: 7229131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Computations Underlying Detection of Gaps in Sounds and Lateralizing Sound Sources.
    Oertel D; Cao XJ; Ison JR; Allen PD
    Trends Neurosci; 2017 Oct; 40(10):613-624. PubMed ID: 28867348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve.
    Babalian AL; Ryugo DK; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):452-60. PubMed ID: 12955378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei.
    Cant NB; Benson CG
    Brain Res Bull; 2003 Jun; 60(5-6):457-74. PubMed ID: 12787867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse.
    Liu X; Yan Y; Wang Y; Yan J
    PLoS One; 2010 Nov; 5(11):e14038. PubMed ID: 21124980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of the vertex short-latency acoustic response: a study of single neurons in the brain stem.
    Huang CM; Buchwald JS
    Brain Res; 1977 Dec; 137(2):291-303. PubMed ID: 589456
    [No Abstract]   [Full Text] [Related]  

  • 17. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse.
    Oertel D
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):328-33. PubMed ID: 2993393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust sound onset detection using leaky integrate-and-fire neurons with depressing synapses.
    Smith LS; Fraser DS
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1125-34. PubMed ID: 15484889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology.
    Sommer I; Lingenhöhl K; Friauf E
    Exp Brain Res; 1993; 95(2):223-39. PubMed ID: 8224048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.