These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18212015)

  • 1. Free energy of sickle hemoglobin polymerization: a scaled-particle treatment for use with dextran as a crowding agent.
    Liu Z; Weng W; Bookchin RM; Lew VL; Ferrone FA
    Biophys J; 2008 May; 94(9):3629-34. PubMed ID: 18212015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crowding and the polymerization of sickle hemoglobin.
    Ferrone FA; Rotter MA
    J Mol Recognit; 2004; 17(5):497-504. PubMed ID: 15362110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach.
    Ferrone FA; Ivanova M; Jasuja R
    Biophys J; 2002 Jan; 82(1 Pt 1):399-406. PubMed ID: 11751326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo.
    Guttman HJ; Anderson CF; Record MT
    Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. Effects of non-s hemoglobins and inhibitors.
    Bookchin RM; Balazs T; Wang Z; Josephs R; Lew VL
    J Biol Chem; 1999 Mar; 274(10):6689-97. PubMed ID: 10037766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonideality and the nucleation of sickle hemoglobin.
    Ivanova M; Jasuja R; Kwong S; Briehl RW; Ferrone FA
    Biophys J; 2000 Aug; 79(2):1016-22. PubMed ID: 10920031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal metastability of sickle hemoglobin polymerization.
    Weng W; Aprelev A; Briehl RW; Ferrone FA
    J Mol Biol; 2008 Apr; 377(4):1228-35. PubMed ID: 18308336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubility of sickle hemoglobin measured by a kinetic micromethod.
    Liao D; Martin de Llano JJ; Himanen JP; Manning JM; Ferrone FA
    Biophys J; 1996 May; 70(5):2442-7. PubMed ID: 9172771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and polymerization of sickle hemoglobin with Leu beta 88 substituted by Ala.
    Cao Z; Liao D; Mirchev R; Martin de Llano JJ; Himanen JP; Manning JM; Ferrone FA
    J Mol Biol; 1997 Feb; 265(5):580-9. PubMed ID: 9048950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable gels: A novel application of Ogston theory to sickle hemoglobin polymers.
    Weng W; Ferrone FA
    Biophys Chem; 2011 Mar; 154(2-3):99-101. PubMed ID: 21334802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization and sickle cell disease: a molecular view.
    Ferrone FA
    Microcirculation; 2004 Mar; 11(2):115-28. PubMed ID: 15280087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced inhibition of polymerization of sickle cell hemoglobin in the presence of recombinant mutants of human fetal hemoglobin with substitutions at position 43 in the gamma-chain.
    Tam MF; Chen J; Tam TC; Tsai CH; Shen TJ; Simplaceanu V; Feinstein TN; Barrick D; Ho C
    Biochemistry; 2005 Sep; 44(36):12188-95. PubMed ID: 16142917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water, Ions, and Hemoglobin: Effects on Allostery and Polymerization.
    Rotter MA; Jiang J; Ferrone SM; Ferrone FA
    J Phys Chem B; 2018 Dec; 122(49):11591-11597. PubMed ID: 30222355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer.
    Chen K; Ballas SK; Hantgan RR; Kim-Shapiro DB
    Biophys J; 2004 Dec; 87(6):4113-21. PubMed ID: 15465861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alizarin interaction with sickle hemoglobin: elucidation of their anti-sickling properties by multi-spectroscopic and molecular modeling techniques.
    Syed MM; Doshi PJ; Kulkarni MV; Dhavale DD; Kadam NS; Kate SL; Doshi JB; Sharma N; Uppuladinne M; Sonavane U; Joshi R; Doshi SJ; Bhattacharya N
    J Biomol Struct Dyn; 2019 Oct; 37(17):4614-4631. PubMed ID: 30558488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band 3 catalyzes sickle hemoglobin polymerization.
    Rotter MA; Chu H; Low PS; Ferrone FA
    Biophys Chem; 2010 Feb; 146(2-3):55-9. PubMed ID: 19880238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pH on instability and aggregation of sickle hemoglobin solutions.
    Manno M; San Biagio PL; Palma MU
    Proteins; 2004 Apr; 55(1):169-76. PubMed ID: 14997550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastable polymerization of sickle hemoglobin in droplets.
    Aprelev A; Weng W; Zakharov M; Rotter M; Yosmanovich D; Kwong S; Briehl RW; Ferrone FA
    J Mol Biol; 2007 Jun; 369(5):1170-4. PubMed ID: 17493634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin.
    Pan W; Galkin O; Filobelo L; Nagel RL; Vekilov PG
    Biophys J; 2007 Jan; 92(1):267-77. PubMed ID: 17040989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.