These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 18212064)
1. Chromatin-bound p53 anchors activated Smads and the mSin3A corepressor to confer transforming-growth-factor-beta-mediated transcription repression. Wilkinson DS; Tsai WW; Schumacher MA; Barton MC Mol Cell Biol; 2008 Mar; 28(6):1988-98. PubMed ID: 18212064 [TBL] [Abstract][Full Text] [Related]
2. A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Wilkinson DS; Ogden SK; Stratton SA; Piechan JL; Nguyen TT; Smulian GA; Barton MC Mol Cell Biol; 2005 Feb; 25(3):1200-12. PubMed ID: 15657445 [TBL] [Abstract][Full Text] [Related]
3. Repression of p53-mediated transcription by adenovirus E1B 55-kDa does not require corepressor mSin3A and histone deacetylases. Zhao LY; Santiago A; Liu J; Liao D J Biol Chem; 2007 Mar; 282(10):7001-10. PubMed ID: 17209038 [TBL] [Abstract][Full Text] [Related]
4. Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Nguyen TT; Cho K; Stratton SA; Barton MC Mol Cell Biol; 2005 Mar; 25(6):2147-57. PubMed ID: 15743813 [TBL] [Abstract][Full Text] [Related]
5. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4. Tecalco-Cruz AC; Sosa-Garrocho M; Vázquez-Victorio G; Ortiz-García L; Domínguez-Hüttinger E; Macías-Silva M J Biol Chem; 2012 Aug; 287(32):26764-76. PubMed ID: 22674574 [TBL] [Abstract][Full Text] [Related]
6. Smad3-mSin3A-HDAC1 Complex is Required for TGF-β1-Induced Transcriptional Inhibition of PPARγ in Mouse Cardiac Fibroblasts. Gong K; Chen M; Li R; He Y; Zhu H; Yao D; Oparil S; Zhang Z Cell Physiol Biochem; 2016; 40(5):908-920. PubMed ID: 27941310 [TBL] [Abstract][Full Text] [Related]
7. Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. Taube JH; Allton K; Duncan SA; Shen L; Barton MC J Biol Chem; 2010 May; 285(21):16135-44. PubMed ID: 20348100 [TBL] [Abstract][Full Text] [Related]
8. Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. Cui R; Nguyen TT; Taube JH; Stratton SA; Feuerman MH; Barton MC J Biol Chem; 2005 Nov; 280(47):39152-60. PubMed ID: 16203738 [TBL] [Abstract][Full Text] [Related]
9. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Ellenrieder V; Buck A; Harth A; Jungert K; Buchholz M; Adler G; Urrutia R; Gress TM Gastroenterology; 2004 Aug; 127(2):607-20. PubMed ID: 15300592 [TBL] [Abstract][Full Text] [Related]
10. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-beta1 signaling. Yang J; Zhang X; Li Y; Liu Y J Am Soc Nephrol; 2003 Dec; 14(12):3167-77. PubMed ID: 14638915 [TBL] [Abstract][Full Text] [Related]
12. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Kalo E; Buganim Y; Shapira KE; Besserglick H; Goldfinger N; Weisz L; Stambolsky P; Henis YI; Rotter V Mol Cell Biol; 2007 Dec; 27(23):8228-42. PubMed ID: 17875924 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Murphy M; Ahn J; Walker KK; Hoffman WH; Evans RM; Levine AJ; George DL Genes Dev; 1999 Oct; 13(19):2490-501. PubMed ID: 10521394 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of SnoN oncoprotein induced by antibiotics anisomycin and puromycin positively regulates transforming growth factor-β signals. Hernández-Damián J; Tecalco-Cruz AC; Ríos-López DG; Vázquez-Victorio G; Vázquez-Macías A; Caligaris C; Sosa-Garrocho M; Flores-Pérez B; Romero-Avila M; Macías-Silva M Biochim Biophys Acta; 2013 Nov; 1830(11):5049-58. PubMed ID: 23872350 [TBL] [Abstract][Full Text] [Related]
15. p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Tsai WW; Nguyen TT; Shi Y; Barton MC Mol Cell Biol; 2008 Sep; 28(17):5139-46. PubMed ID: 18573881 [TBL] [Abstract][Full Text] [Related]
16. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Moon H; Ju HL; Chung SI; Cho KJ; Eun JW; Nam SW; Han KH; Calvisi DF; Ro SW Gastroenterology; 2017 Nov; 153(5):1378-1391.e6. PubMed ID: 28734833 [TBL] [Abstract][Full Text] [Related]
17. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling. Baldwin RL; Tran H; Karlan BY Cancer Res; 2003 Mar; 63(6):1413-9. PubMed ID: 12649207 [TBL] [Abstract][Full Text] [Related]
18. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Xu W; Angelis K; Danielpour D; Haddad MM; Bischof O; Campisi J; Stavnezer E; Medrano EE Proc Natl Acad Sci U S A; 2000 May; 97(11):5924-9. PubMed ID: 10811875 [TBL] [Abstract][Full Text] [Related]
19. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. Yang J; Dai C; Liu Y J Am Soc Nephrol; 2005 Jan; 16(1):68-78. PubMed ID: 15537870 [TBL] [Abstract][Full Text] [Related]
20. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Stroschein SL; Wang W; Zhou S; Zhou Q; Luo K Science; 1999 Oct; 286(5440):771-4. PubMed ID: 10531062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]