These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18213376)

  • 1. What happens in between? Human oscillatory brain activity related to crossmodal spatial cueing.
    Trenner MU; Heekeren HR; Bauer M; Rössner K; Wenzel R; Villringer A; Fahle M
    PLoS One; 2008 Jan; 3(1):e1467. PubMed ID: 18213376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparatory states in crossmodal spatial attention: spatial specificity and possible control mechanisms.
    Macaluso E; Eimer M; Frith CD; Driver J
    Exp Brain Res; 2003 Mar; 149(1):62-74. PubMed ID: 12592504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No Evidence for a Role of Spatially Modulated α-Band Activity in Tactile Remapping and Short-Latency, Overt Orienting Behavior.
    Ossandón JP; König P; Heed T
    J Neurosci; 2020 Nov; 40(47):9088-9102. PubMed ID: 33087476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials.
    Eimer M; Van Velzen J
    Psychophysiology; 2002 Jul; 39(4):437-49. PubMed ID: 12212636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Within-hemifield posture changes affect tactile-visual exogenous spatial cueing without spatial precision, especially in the dark.
    Kennett S; Driver J
    Atten Percept Psychophys; 2014 May; 76(4):1121-35. PubMed ID: 24470256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossmodal learning of target-context associations: When would tactile context predict visual search?
    Chen S; Shi Z; Zang X; Zhu X; Assumpção L; Müller HJ; Geyer T
    Atten Percept Psychophys; 2020 May; 82(4):1682-1694. PubMed ID: 31845105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling attention from action in the emotional spatial cueing task.
    Mulckhuyse M; Crombez G
    Cogn Emot; 2014; 28(7):1223-41. PubMed ID: 24467679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
    Bauer M; Oostenveld R; Peeters M; Fries P
    J Neurosci; 2006 Jan; 26(2):490-501. PubMed ID: 16407546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisensory stimulation with or without saccades: fMRI evidence for crossmodal effects on sensory-specific cortices that reflect multisensory location-congruence rather than task-relevance.
    Macaluso E; Frith CD; Driver J
    Neuroimage; 2005 Jun; 26(2):414-25. PubMed ID: 15907299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Links between eye movement preparation and the attentional processing of tactile events: an event-related brain potential study.
    Gherri E; Eimer M
    Clin Neurophysiol; 2008 Nov; 119(11):2587-97. PubMed ID: 18786857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When far is near: ERP correlates of crossmodal spatial interactions between tactile and mirror-reflected visual stimuli.
    Sambo CF; Forster B
    Neurosci Lett; 2011 Aug; 500(1):10-5. PubMed ID: 21683122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.
    Jones A
    Front Integr Neurosci; 2014; 8():96. PubMed ID: 25610378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial attentional shifts: further evidence for the role of polysensory mechanisms using visual and tactile stimuli.
    Butter CM; Buchtel HA; Santucci R
    Neuropsychologia; 1989; 27(10):1231-40. PubMed ID: 2594169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Crossmodal attention between vision and touch in temporal order judgment task].
    Wada Y
    Shinrigaku Kenkyu; 2003 Dec; 74(5):420-7. PubMed ID: 15029758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile-visual links in exogenous spatial attention under different postures: convergent evidence from psychophysics and ERPs.
    Kennett S; Eimer M; Spence C; Driver J
    J Cogn Neurosci; 2001 May; 13(4):462-78. PubMed ID: 11388920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifts of attention in light and in darkness: an ERP study of supramodal attentional control and crossmodal links in spatial attention.
    Eimer M; van Velzen J; Forster B; Driver J
    Brain Res Cogn Brain Res; 2003 Feb; 15(3):308-23. PubMed ID: 12527104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonspatial cueing of tactile STM causes shift of spatial attention.
    Katus T; Andersen SK; Müller MM
    J Cogn Neurosci; 2012 Jul; 24(7):1596-609. PubMed ID: 22452555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.
    Hopkins K; Kass SJ; Blalock LD; Brill JC
    Ergonomics; 2017 May; 60(5):692-700. PubMed ID: 27267493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation.
    Ahrens MM; Veniero D; Freund IM; Harvey M; Thut G
    Cortex; 2019 Aug; 117():168-181. PubMed ID: 30981955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.